def tiny_yolo_body(inputs, num_anchors, num_classes): """Create Tiny YOLO_v3 model CNN body in keras.""" x1 = compose( DarknetConv2D_BN_Leaky(16, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"), DarknetConv2D_BN_Leaky(32, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"), DarknetConv2D_BN_Leaky(64, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"), DarknetConv2D_BN_Leaky(128, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"), DarknetConv2D_BN_Leaky(256, (3, 3)), )(inputs) x2 = compose( MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding="same"), DarknetConv2D_BN_Leaky(512, (3, 3)), MaxPooling2D(pool_size=(2, 2), strides=(1, 1), padding="same"), DarknetConv2D_BN_Leaky(1024, (3, 3)), DarknetConv2D_BN_Leaky(256, (1, 1)), )(x1) y1 = compose( DarknetConv2D_BN_Leaky(512, (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)), )(x2) x2 = compose(DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x2) y2 = compose( Concatenate(), DarknetConv2D_BN_Leaky(256, (3, 3)), DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)), )([x2, x1]) return Model(inputs, [y1, y2])
def make_last_layers(x, num_filters, out_filters): """6 Conv2D_BN_Leaky layers followed by a Conv2D_linear layer""" x = compose( DarknetConv2D_BN_Leaky(num_filters, (1, 1)), DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D_BN_Leaky(num_filters, (1, 1)), DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D_BN_Leaky(num_filters, (1, 1)), )(x) y = compose( DarknetConv2D_BN_Leaky(num_filters * 2, (3, 3)), DarknetConv2D(out_filters, (1, 1)), )(x) return x, y
def yolo_body(inputs, num_anchors, num_classes): """Create YOLO_V3 model CNN body in Keras.""" darknet = Model(inputs, darknet_body(inputs)) x, y1 = make_last_layers(darknet.output, 512, num_anchors * (num_classes + 5)) x = compose(DarknetConv2D_BN_Leaky(256, (1, 1)), UpSampling2D(2))(x) x = Concatenate()([x, darknet.layers[152].output]) x, y2 = make_last_layers(x, 256, num_anchors * (num_classes + 5)) x = compose(DarknetConv2D_BN_Leaky(128, (1, 1)), UpSampling2D(2))(x) x = Concatenate()([x, darknet.layers[92].output]) x, y3 = make_last_layers(x, 128, num_anchors * (num_classes + 5)) return Model(inputs, [y1, y2, y3])
def DarknetConv2D_BN_Leaky(*args, **kwargs): """Darknet Convolution2D followed by BatchNormalization and LeakyReLU.""" no_bias_kwargs = {"use_bias": False} no_bias_kwargs.update(kwargs) return compose( DarknetConv2D(*args, **no_bias_kwargs), BatchNormalization(), LeakyReLU(alpha=0.1), )
def resblock_body(x, num_filters, num_blocks): """A series of resblocks starting with a downsampling Convolution2D""" # Darknet uses left and top padding instead of 'same' mode x = ZeroPadding2D(((1, 0), (1, 0)))(x) x = DarknetConv2D_BN_Leaky(num_filters, (3, 3), strides=(2, 2))(x) for i in range(num_blocks): y = compose( DarknetConv2D_BN_Leaky(num_filters // 2, (1, 1)), DarknetConv2D_BN_Leaky(num_filters, (3, 3)), )(x) x = Add()([x, y]) return x