def test_tfd_nll(occ_dim=15, drop_prob=0.0): RESULT_PATH = "IMP_TFD_TM/" ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = RESULT_PATH + "TM_OD{}_DP{}".format(occ_dim, dp_int) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) data_file = 'data/tfd_data_48x48.pkl' dataset = load_tfd(tfd_pkl_name=data_file, which_set='unlabeled', fold='all') Xtr_unlabeled = dataset[0] dataset = load_tfd(tfd_pkl_name=data_file, which_set='train', fold='all') Xtr_train = dataset[0] Xtr = np.vstack([Xtr_unlabeled, Xtr_train]) dataset = load_tfd(tfd_pkl_name=data_file, which_set='valid', fold='all') Xva = dataset[0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1], ))) TM = TemplateMatchImputer(x_train=Xtr, x_type='bernoulli') log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = TM.best_match_nll(xo, xm) match_on_known = np.mean(result[0]) match_on_unknown = np.mean(result[1]) str0 = "Test 1:" str1 = " match on known : {}".format(match_on_known) str2 = " match on unknown : {}".format(match_on_unknown) joint_str = "\n".join([str0, str1, str2]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() out_file.close() return
def test_tfd_nll(occ_dim=15, drop_prob=0.0): RESULT_PATH = "IMP_TFD_TM/" ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = RESULT_PATH + "TM_OD{}_DP{}".format(occ_dim, dp_int) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) data_file = 'data/tfd_data_48x48.pkl' dataset = load_tfd(tfd_pkl_name=data_file, which_set='unlabeled', fold='all') Xtr_unlabeled = dataset[0] dataset = load_tfd(tfd_pkl_name=data_file, which_set='train', fold='all') Xtr_train = dataset[0] Xtr = np.vstack([Xtr_unlabeled, Xtr_train]) dataset = load_tfd(tfd_pkl_name=data_file, which_set='valid', fold='all') Xva = dataset[0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX( all_pix_mean * np.ones((Xtr.shape[1],)) ) TM = TemplateMatchImputer(x_train=Xtr, x_type='bernoulli') log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = TM.best_match_nll(xo, xm) match_on_known = np.mean(result[0]) match_on_unknown = np.mean(result[1]) str0 = "Test 1:" str1 = " match on known : {}".format(match_on_known) str2 = " match on unknown : {}".format(match_on_unknown) joint_str = "\n".join([str0, str1, str2]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() out_file.close() return
def test_mnist_img(occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = RESULT_PATH + "TM_OD{}_DP{}".format(occ_dim, dp_int) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 200 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1],))) TM = TemplateMatchImputer(x_train=Xtr, x_type='bernoulli') Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva[:500], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) img_match_on_known, img_match_on_unknown = TM.best_match_img(xo, xm) display_count = 100 # visualize matches on known elements Xs = np.zeros((2*display_count, Xva.shape[1])) for idx in range(display_count): Xs[2*idx] = xi[idx] Xs[(2*idx)+1] = img_match_on_known[idx] file_name = "{0:s}_SAMPLES_MOK.png".format(result_tag) utils.visualize_samples(Xs, file_name, num_rows=20) # visualize matches on unknown elements Xs = np.zeros((2*display_count, Xva.shape[1])) for idx in range(display_count): Xs[2*idx] = xi[idx] Xs[(2*idx)+1] = img_match_on_unknown[idx] file_name = "{0:s}_SAMPLES_MOU.png".format(result_tag) utils.visualize_samples(Xs, file_name, num_rows=20) return
def test_mnist_img(occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = RESULT_PATH + "TM_OD{}_DP{}".format(occ_dim, dp_int) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 200 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1], ))) TM = TemplateMatchImputer(x_train=Xtr, x_type='bernoulli') Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva[:500], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) img_match_on_known, img_match_on_unknown = TM.best_match_img(xo, xm) display_count = 100 # visualize matches on known elements Xs = np.zeros((2 * display_count, Xva.shape[1])) for idx in range(display_count): Xs[2 * idx] = xi[idx] Xs[(2 * idx) + 1] = img_match_on_known[idx] file_name = "{0:s}_SAMPLES_MOK.png".format(result_tag) utils.visualize_samples(Xs, file_name, num_rows=20) # visualize matches on unknown elements Xs = np.zeros((2 * display_count, Xva.shape[1])) for idx in range(display_count): Xs[2 * idx] = xi[idx] Xs[(2 * idx) + 1] = img_match_on_unknown[idx] file_name = "{0:s}_SAMPLES_MOU.png".format(result_tag) utils.visualize_samples(Xs, file_name, num_rows=20) return
def test_svhn_nll(occ_dim=15, drop_prob=0.0): RESULT_PATH = "IMP_SVHN_TM/" ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = RESULT_PATH + "TM_OD{}_DP{}".format(occ_dim, dp_int) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) tr_file = 'data/svhn_train_gray.pkl' te_file = 'data/svhn_test_gray.pkl' ex_file = 'data/svhn_extra_gray.pkl' data = load_svhn_gray(tr_file, te_file, ex_file=ex_file, ex_count=200000) Xtr = to_fX( shift_and_scale_into_01(np.vstack([data['Xtr'], data['Xex']])) ) Xva = to_fX( shift_and_scale_into_01(data['Xte']) ) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX( all_pix_mean * np.ones((Xtr.shape[1],)) ) TM = TemplateMatchImputer(x_train=Xtr, x_type='bernoulli') log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = TM.best_match_nll(xo, xm) match_on_known = np.mean(result[0]) match_on_unknown = np.mean(result[1]) str0 = "Test 1:" str1 = " match on known : {}".format(match_on_known) str2 = " match on unknown : {}".format(match_on_unknown) joint_str = "\n".join([str0, str1, str2]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() out_file.close() return
def test_svhn_nll(occ_dim=15, drop_prob=0.0): RESULT_PATH = "IMP_SVHN_TM/" ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = RESULT_PATH + "TM_OD{}_DP{}".format(occ_dim, dp_int) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) tr_file = 'data/svhn_train_gray.pkl' te_file = 'data/svhn_test_gray.pkl' ex_file = 'data/svhn_extra_gray.pkl' data = load_svhn_gray(tr_file, te_file, ex_file=ex_file, ex_count=200000) Xtr = to_fX(shift_and_scale_into_01(np.vstack([data['Xtr'], data['Xex']]))) Xva = to_fX(shift_and_scale_into_01(data['Xte'])) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1], ))) TM = TemplateMatchImputer(x_train=Xtr, x_type='bernoulli') log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = TM.best_match_nll(xo, xm) match_on_known = np.mean(result[0]) match_on_unknown = np.mean(result[1]) str0 = "Test 1:" str1 = " match on known : {}".format(match_on_known) str2 = " match on unknown : {}".format(match_on_unknown) joint_str = "\n".join([str0, str1, str2]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() out_file.close() return
def test_mnist_nll(occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = RESULT_PATH + "TM_OD{}_DP{}".format(occ_dim, dp_int) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 200 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1],))) TM = TemplateMatchImputer(x_train=Xtr, x_type='bernoulli') log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = TM.best_match_nll(xo, xm) match_on_known = np.mean(result[0]) match_on_unknown = np.mean(result[1]) str0 = "Test 1:" str1 = " match on known : {}".format(match_on_known) str2 = " match on unknown : {}".format(match_on_unknown) joint_str = "\n".join([str0, str1, str2]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() out_file.close() return
def test_svhn(occ_dim=15, drop_prob=0.0): RESULT_PATH = "IMP_SVHN_VAE/" ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}VAE_OD{}_DP{}".format(RESULT_PATH, occ_dim, dp_int) ########################## # Get some training data # ########################## tr_file = 'data/svhn_train_gray.pkl' te_file = 'data/svhn_test_gray.pkl' ex_file = 'data/svhn_extra_gray.pkl' data = load_svhn_gray(tr_file, te_file, ex_file=ex_file, ex_count=200000) Xtr = to_fX( shift_and_scale_into_01(np.vstack([data['Xtr'], data['Xex']])) ) Xva = to_fX( shift_and_scale_into_01(data['Xte']) ) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX( all_pix_mean * np.ones((Xtr.shape[1],)) ) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ obs_dim = Xtr.shape[1] z_dim = 100 imp_steps = 15 # we'll check for the best step count (found oracularly) init_scale = 1.0 x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') x_mask_sym = T.matrix('x_mask_sym') ################# # p_zi_given_xi # ################# params = {} shared_config = [obs_dim, 1000, 1000] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_zi_given_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_zi_given_xi.init_biases(0.2) ################### # p_xip1_given_zi # ################### params = {} shared_config = [z_dim, 1000, 1000] output_config = [obs_dim, obs_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_xip1_given_zi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_xip1_given_zi.init_biases(0.2) ################### # q_zi_given_x_xi # ################### params = {} shared_config = [(obs_dim + obs_dim), 1000, 1000] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['lam_l2a'] = 0.0 params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_zi_given_x_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_zi_given_x_xi.init_biases(0.2) ########################################################### # Define parameters for the GPSImputer, and initialize it # ########################################################### print("Building the GPSImputer...") gpsi_params = {} gpsi_params['obs_dim'] = obs_dim gpsi_params['z_dim'] = z_dim gpsi_params['imp_steps'] = imp_steps gpsi_params['step_type'] = 'jump' gpsi_params['x_type'] = 'bernoulli' gpsi_params['obs_transform'] = 'sigmoid' gpsi_params['use_osm_mode'] = True GPSI = GPSImputer(rng=rng, x_in=x_in_sym, x_out=x_out_sym, x_mask=x_mask_sym, \ p_zi_given_xi=p_zi_given_xi, \ p_xip1_given_zi=p_xip1_given_zi, \ q_zi_given_x_xi=q_zi_given_x_xi, \ params=gpsi_params, \ shared_param_dicts=None) ######################################################################### # Define parameters for the underlying OneStageModel, and initialize it # ######################################################################### print("Building the OneStageModel...") osm_params = {} osm_params['x_type'] = 'bernoulli' osm_params['xt_transform'] = 'sigmoid' OSM = OneStageModel(rng=rng, \ x_in=x_in_sym, \ p_x_given_z=p_xip1_given_zi, \ q_z_given_x=p_zi_given_xi, \ x_dim=obs_dim, z_dim=z_dim, \ params=osm_params) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') costs = [0. for i in range(10)] learn_rate = 0.0002 momentum = 0.5 batch_idx = np.arange(batch_size) + tr_samples for i in range(200005): scale = min(1.0, ((i+1) / 5000.0)) if (((i + 1) % 15000) == 0): learn_rate = learn_rate * 0.92 if (i > 10000): momentum = 0.90 else: momentum = 0.50 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update OSM.set_sgd_params(lr=scale*learn_rate, \ mom_1=scale*momentum, mom_2=0.99) OSM.set_lam_nll(lam_nll=1.0) OSM.set_lam_kld(lam_kld_1=1.0, lam_kld_2=0.0) OSM.set_lam_l2w(1e-4) # perform a minibatch update and record the cost for this batch xb = to_fX( Xtr.take(batch_idx, axis=0) ) result = OSM.train_joint(xb, batch_reps) costs = [(costs[j] + result[j]) for j in range(len(result)-1)] if ((i % 250) == 0): costs = [(v / 250.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " joint_cost: {0:.4f}".format(costs[0]) str3 = " nll_cost : {0:.4f}".format(costs[1]) str4 = " kld_cost : {0:.4f}".format(costs[2]) str5 = " reg_cost : {0:.4f}".format(costs[3]) joint_str = "\n".join([str1, str2, str3, str4, str5]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva[0:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) step_nll, step_kld = GPSI.compute_per_step_cost(xi, xo, xm, sample_count=10) min_nll = np.min(step_nll) str1 = " va_nll_bound : {}".format(min_nll) str2 = " va_nll_min : {}".format(min_nll) str3 = " va_nll_final : {}".format(step_nll[-1]) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() if ((i % 10000) == 0): # Get some validation samples for evaluating model performance xb = to_fX( Xva[0:100] ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) xi = np.repeat(xi, 2, axis=0) xo = np.repeat(xo, 2, axis=0) xm = np.repeat(xm, 2, axis=0) # draw some sample imputations from the model samp_count = xi.shape[0] _, model_samps = GPSI.sample_imputer(xi, xo, xm, use_guide_policy=False) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "{}_samples_ng_b{}.png".format(result_tag, i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # get visualizations of policy parameters file_name = "{}_gen_gen_weights_b{}.png".format(result_tag, i) W = GPSI.gen_gen_weights.get_value(borrow=False) utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "{}_gen_inf_weights_b{}.png".format(result_tag, i) W = GPSI.gen_inf_weights.get_value(borrow=False).T utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20)
def test_svhn(step_type='add', occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_OD{}_DP{}_{}_NA".format(RESULT_PATH, occ_dim, dp_int, step_type) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) tr_file = 'data/svhn_train_gray.pkl' te_file = 'data/svhn_test_gray.pkl' ex_file = 'data/svhn_extra_gray.pkl' data = load_svhn_gray(tr_file, te_file, ex_file=ex_file, ex_count=200000) Xtr = to_fX(shift_and_scale_into_01(np.vstack([data['Xtr'], data['Xex']]))) Xva = to_fX(shift_and_scale_into_01(data['Xte'])) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1], ))) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] z_dim = 200 imp_steps = 6 init_scale = 1.0 x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') x_mask_sym = T.matrix('x_mask_sym') ################# # p_zi_given_xi # ################# params = {} shared_config = [x_dim, 1500, 1500] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_zi_given_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_zi_given_xi.init_biases(0.2) ################### # p_xip1_given_zi # ################### params = {} shared_config = [z_dim, 1500, 1500] output_config = [x_dim, x_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_xip1_given_zi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_xip1_given_zi.init_biases(0.2) ################### # q_zi_given_xi # ################### params = {} shared_config = [(x_dim + x_dim), 1500, 1500] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_zi_given_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_zi_given_xi.init_biases(0.2) ########################################################### # Define parameters for the GPSImputer, and initialize it # ########################################################### print("Building the GPSImputer...") gpsi_params = {} gpsi_params['x_dim'] = x_dim gpsi_params['z_dim'] = z_dim gpsi_params['imp_steps'] = imp_steps gpsi_params['step_type'] = step_type gpsi_params['x_type'] = 'bernoulli' gpsi_params['obs_transform'] = 'sigmoid' GPSI = GPSImputer(rng=rng, x_in=x_in_sym, x_out=x_out_sym, x_mask=x_mask_sym, \ p_zi_given_xi=p_zi_given_xi, \ p_xip1_given_zi=p_xip1_given_zi, \ q_zi_given_xi=q_zi_given_xi, \ params=gpsi_params, \ shared_param_dicts=None) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') costs = [0. for i in range(10)] learn_rate = 0.0002 momentum = 0.5 batch_idx = np.arange(batch_size) + tr_samples for i in range(200005): scale = min(1.0, ((i + 1) / 5000.0)) if (((i + 1) % 15000) == 0): learn_rate = learn_rate * 0.92 if (i > 10000): momentum = 0.90 else: momentum = 0.50 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update GPSI.set_sgd_params(lr=scale*learn_rate, \ mom_1=scale*momentum, mom_2=0.98) GPSI.set_train_switch(1.0) GPSI.set_lam_nll(lam_nll=1.0) GPSI.set_lam_kld(lam_kld_p=0.1, lam_kld_q=0.9) GPSI.set_lam_l2w(1e-4) # perform a minibatch update and record the cost for this batch xb = to_fX(Xtr.take(batch_idx, axis=0)) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = GPSI.train_joint(xi, xo, xm, batch_reps) # do diagnostics and general training tracking costs = [(costs[j] + result[j]) for j in range(len(result) - 1)] if ((i % 250) == 0): costs = [(v / 250.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " joint_cost: {0:.4f}".format(costs[0]) str3 = " nll_bound : {0:.4f}".format(costs[1]) str4 = " nll_cost : {0:.4f}".format(costs[2]) str5 = " kld_cost : {0:.4f}".format(costs[3]) str6 = " reg_cost : {0:.4f}".format(costs[4]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva[0:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll, kld = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() GPSI.save_to_file("{}_PARAMS.pkl".format(result_tag)) if ((i % 20000) == 0): # Get some validation samples for evaluating model performance xb = to_fX(Xva[0:100]) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) xi = np.repeat(xi, 2, axis=0) xo = np.repeat(xo, 2, axis=0) xm = np.repeat(xm, 2, axis=0) # draw some sample imputations from the model samp_count = xi.shape[0] _, model_samps = GPSI.sample_imputer(xi, xo, xm, use_guide_policy=False) seq_len = len(model_samps) seq_samps = np.zeros( (seq_len * samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "{0:s}_samples_ng_b{1:d}.png".format(result_tag, i) utils.visualize_samples(seq_samps, file_name, num_rows=20)
def test_mnist(step_type='add', imp_steps=6, occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_conv_bn_OD{}_DP{}_IS{}_{}_NA".format(RESULT_PATH, occ_dim, dp_int, imp_steps, step_type) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xte = datasets[2][0] # Merge validation set and training set, and test on test set. Xtr = np.concatenate((Xtr, Xva), axis=0) Xva = Xte Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 200 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX( all_pix_mean * np.ones((Xtr.shape[1],)) ) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] z_dim = 100 init_scale = 1.0 use_bn = True x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') x_mask_sym = T.matrix('x_mask_sym') ################# # p_zi_given_xi # ################# params = {} shared_config = \ [ {'layer_type': 'conv', 'in_chans': 1, # in shape: (batch, 784) 'out_chans': 64, # out shape: (batch, 64, 14, 14) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'double', 'apply_bn': use_bn, 'shape_func_in': lambda x: T.reshape(x, (-1, 1, 28, 28))}, \ {'layer_type': 'conv', 'in_chans': 64, # in shape: (batch, 64, 14, 14) 'out_chans': 128, # out shape: (batch, 128, 7, 7) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'double', 'apply_bn': use_bn, 'shape_func_out': lambda x: T.flatten(x, 2)}, \ {'layer_type': 'fc', 'in_chans': 128*7*7, 'out_chans': 256, 'activation': relu_actfun, 'apply_bn': use_bn} ] output_config = \ [ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': z_dim, 'activation': relu_actfun, 'apply_bn': False}, \ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': z_dim, 'activation': relu_actfun, 'apply_bn': False} ] params['shared_config'] = shared_config params['output_config'] = output_config params['init_scale'] = init_scale params['build_theano_funcs'] = False p_zi_given_xi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_zi_given_xi.init_biases(0.0) ################### # p_sip1_given_zi # ################### params = {} shared_config = \ [ {'layer_type': 'fc', 'in_chans': z_dim, 'out_chans': 256, 'activation': relu_actfun, 'apply_bn': use_bn}, \ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': 7*7*128, 'activation': relu_actfun, 'apply_bn': use_bn, 'shape_func_out': lambda x: T.reshape(x, (-1, 128, 7, 7))}, \ {'layer_type': 'conv', 'in_chans': 128, # in shape: (batch, 128, 7, 7) 'out_chans': 64, # out shape: (batch, 64, 14, 14) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'half', 'apply_bn': use_bn} ] output_config = \ [ {'layer_type': 'conv', 'in_chans': 64, # in shape: (batch, 64, 14, 14) 'out_chans': 1, # out shape: (batch, 1, 28, 28) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'half', 'apply_bn': False, 'shape_func_out': lambda x: T.flatten(x, 2)}, \ {'layer_type': 'conv', 'in_chans': 64, 'out_chans': 1, 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'half', 'apply_bn': False, 'shape_func_out': lambda x: T.flatten(x, 2)}, \ {'layer_type': 'conv', 'in_chans': 64, 'out_chans': 1, 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'half', 'apply_bn': False, 'shape_func_out': lambda x: T.flatten(x, 2)} ] params['shared_config'] = shared_config params['output_config'] = output_config params['init_scale'] = init_scale params['build_theano_funcs'] = False p_sip1_given_zi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_sip1_given_zi.init_biases(0.0) ################# # q_zi_given_xi # ################# params = {} shared_config = \ [ {'layer_type': 'conv', 'in_chans': 2, # in shape: (batch, 784+784) 'out_chans': 64, # out shape: (batch, 64, 14, 14) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'double', 'apply_bn': use_bn, 'shape_func_in': lambda x: T.reshape(x, (-1, 2, 28, 28))}, \ {'layer_type': 'conv', 'in_chans': 64, # in shape: (batch, 64, 14, 14) 'out_chans': 128, # out shape: (batch, 128, 7, 7) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'double', 'apply_bn': use_bn, 'shape_func_out': lambda x: T.flatten(x, 2)}, \ {'layer_type': 'fc', 'in_chans': 128*7*7, 'out_chans': 256, 'activation': relu_actfun, 'apply_bn': use_bn} ] output_config = \ [ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': z_dim, 'activation': relu_actfun, 'apply_bn': False}, \ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': z_dim, 'activation': relu_actfun, 'apply_bn': False} ] params['shared_config'] = shared_config params['output_config'] = output_config params['init_scale'] = init_scale params['build_theano_funcs'] = False q_zi_given_xi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_zi_given_xi.init_biases(0.0) ########################################################### # Define parameters for the GPSImputer, and initialize it # ########################################################### print("Building the GPSImputer...") gpsi_params = {} gpsi_params['x_dim'] = x_dim gpsi_params['z_dim'] = z_dim # switch between direct construction and construction via p_x_given_si gpsi_params['imp_steps'] = imp_steps gpsi_params['step_type'] = step_type gpsi_params['x_type'] = 'bernoulli' gpsi_params['obs_transform'] = 'sigmoid' GPSI = GPSImputer(rng=rng, x_in=x_in_sym, x_out=x_out_sym, x_mask=x_mask_sym, p_zi_given_xi=p_zi_given_xi, p_sip1_given_zi=p_sip1_given_zi, q_zi_given_xi=q_zi_given_xi, params=gpsi_params, shared_param_dicts=None) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') costs = [0. for i in range(10)] learn_rate = 0.0001 momentum = 0.90 batch_idx = np.arange(batch_size) + tr_samples for i in range(200000): scale = min(1.0, ((i+1) / 5000.0)) if (((i + 1) % 15000) == 0): learn_rate = learn_rate * 0.95 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update GPSI.set_sgd_params(lr=scale*learn_rate, \ mom_1=scale*momentum, mom_2=0.98) GPSI.set_train_switch(1.0) GPSI.set_lam_nll(lam_nll=1.0) GPSI.set_lam_kld(lam_kld_q=1.0, lam_kld_p=0.1, lam_kld_g=0.0) GPSI.set_lam_l2w(1e-5) # perform a minibatch update and record the cost for this batch xb = to_fX( Xtr.take(batch_idx, axis=0) ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = GPSI.train_joint(xi, xo, xm, batch_reps) # do diagnostics and general training tracking costs = [(costs[j] + result[j]) for j in range(len(result)-1)] if ((i % 500) == 0): costs = [(v / 500.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " joint_cost: {0:.4f}".format(costs[0]) str3 = " nll_bound : {0:.4f}".format(costs[1]) str4 = " nll_cost : {0:.4f}".format(costs[2]) str5 = " kld_cost : {0:.4f}".format(costs[3]) str6 = " reg_cost : {0:.4f}".format(costs[4]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva[0:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll, kld = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() if ((i % 2000) == 0): #GPSI.save_to_file("{}_PARAMS.pkl".format(result_tag)) # Get some validation samples for evaluating model performance xb = to_fX( Xva[0:100] ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) xi = np.repeat(xi, 2, axis=0) xo = np.repeat(xo, 2, axis=0) xm = np.repeat(xm, 2, axis=0) # draw some sample imputations from the model samp_count = xi.shape[0] _, model_samps = GPSI.sample_imputer(xi, xo, xm, use_guide_policy=False) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "{0:s}_samples_ng_b{1:d}.png".format(result_tag, i) utils.visualize_samples(seq_samps, file_name, num_rows=20)
def test_mnist_results(step_type='add', imp_steps=6, occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_OD{}_DP{}_IS{}_{}_NA".format(RESULT_PATH, occ_dim, dp_int, imp_steps, step_type) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xte = datasets[2][0] # Merge validation set and training set, and test on test set. Xtr = np.concatenate((Xtr, Xva), axis=0) Xva = Xte Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX( all_pix_mean * np.ones((Xtr.shape[1],)) ) # Load parameters from a previously trained model print("Testing model load from file...") GPSI = load_gpsimputer_from_file(f_name="{}_PARAMS.pkl".format(result_tag), \ rng=rng) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_FINAL_RESULTS_NEW.txt".format(result_tag) out_file = open(log_name, 'wb') Xva = row_shuffle(Xva) # record an estimate of performance on the test set str0 = "GUIDED SAMPLE BOUND:" print(str0) xi, xo, xm = construct_masked_data(Xva[:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_0, kld_0 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=True) xi, xo, xm = construct_masked_data(Xva[5000:], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_1, kld_1 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=True) nll = np.concatenate((nll_0, nll_1)) kld = np.concatenate((kld_0, kld_1)) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str0, str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() # record an estimate of performance on the test set str0 = "UNGUIDED SAMPLE BOUND:" print(str0) xi, xo, xm = construct_masked_data(Xva[:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_0, kld_0 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=False) xi, xo, xm = construct_masked_data(Xva[5000:], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_1, kld_1 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=False) nll = np.concatenate((nll_0, nll_1)) kld = np.concatenate((kld_0, kld_1)) str1 = " va_nll_bound : {}".format(np.mean(nll)) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str0, str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush()
def test_sgm_mnist(step_type='add', occ_dim=14, drop_prob=0.0, attention=False): ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) Xtr, Xva, Xte = load_binarized_mnist(data_path='./data/') Xtr = np.vstack((Xtr, Xva)) Xva = Xte #del Xte tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 200 ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] writer_dim = 250 reader_dim = 250 dyn_dim = 250 primary_dim = 500 guide_dim = 500 z_dim = 100 n_iter = 20 dp_int = int(100.0 * drop_prob) rnninits = { 'weights_init': IsotropicGaussian(0.01), 'biases_init': Constant(0.), } inits = { 'weights_init': IsotropicGaussian(0.01), 'biases_init': Constant(0.), } att_tag = "NA" # attention not implemented yet # reader MLP provides input to the dynamics LSTM update reader_mlp = MLP([Rectifier(), Rectifier(), None], \ [(x_dim + z_dim), reader_dim, reader_dim, 4*dyn_dim], \ name="reader_mlp", **inits) # writer MLP applies changes to the generation workspace writer_mlp = MLP([Rectifier(), Rectifier(), None], \ [(dyn_dim + z_dim), writer_dim, writer_dim, x_dim], \ name="writer_mlp", **inits) # MLPs for computing conditionals over z primary_policy = CondNet([Rectifier(), Rectifier()], \ [(dyn_dim + x_dim), primary_dim, primary_dim, z_dim], \ name="primary_policy", **inits) guide_policy = CondNet([Rectifier(), Rectifier()], \ [(dyn_dim + 2*x_dim), guide_dim, guide_dim, z_dim], \ name="guide_policy", **inits) # LSTMs for the actual LSTMs (obviously, perhaps) shared_dynamics = BiasedLSTM(dim=dyn_dim, ig_bias=2.0, fg_bias=2.0, \ name="shared_dynamics", **rnninits) model = SeqGenModel( n_iter, step_type=step_type, # step_type can be 'add' or 'jump' reader_mlp=reader_mlp, writer_mlp=writer_mlp, primary_policy=primary_policy, guide_policy=guide_policy, shared_dynamics=shared_dynamics) model.initialize() # build the cost gradients, training function, samplers, etc. model.build_model_funcs() #model.load_model_params(f_name="TBSGM_IMP_MNIST_PARAMS_OD{}_DP{}_{}_{}.pkl".format(occ_dim, dp_int, step_type, att_tag)) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ print("Beginning to train the model...") out_file = open("TBSGM_IMP_MNIST_RESULTS_OD{}_DP{}_{}_{}.txt".format(occ_dim, dp_int, step_type, att_tag), 'wb') out_file.flush() costs = [0. for i in range(10)] learn_rate = 0.0002 momentum = 0.5 batch_idx = np.arange(batch_size) + tr_samples for i in range(250000): scale = min(1.0, ((i+1) / 1000.0)) if (((i + 1) % 10000) == 0): learn_rate = learn_rate * 0.95 if (i > 10000): momentum = 0.90 else: momentum = 0.50 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update zero_ary = np.zeros((1,)) model.lr.set_value(to_fX(zero_ary + learn_rate)) model.mom_1.set_value(to_fX(zero_ary + momentum)) model.mom_2.set_value(to_fX(zero_ary + 0.99)) # perform a minibatch update and record the cost for this batch Xb = to_fX(Xtr.take(batch_idx, axis=0)) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=None) result = model.train_joint(Xb, Mb) costs = [(costs[j] + result[j]) for j in range(len(result))] if ((i % 200) == 0): costs = [(v / 200.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " total_cost: {0:.4f}".format(costs[0]) str3 = " nll_bound : {0:.4f}".format(costs[1]) str4 = " nll_term : {0:.4f}".format(costs[2]) str5 = " kld_q2p : {0:.4f}".format(costs[3]) str6 = " kld_p2q : {0:.4f}".format(costs[4]) str7 = " reg_term : {0:.4f}".format(costs[5]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6, str7]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): model.save_model_params("TBSGM_IMP_MNIST_PARAMS_OD{}_DP{}_{}_{}.pkl".format(occ_dim, dp_int, step_type, att_tag)) # compute a small-sample estimate of NLL bound on validation set Xva = row_shuffle(Xva) Xb = to_fX(Xva[:5000]) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=None) va_costs = model.compute_nll_bound(Xb, Mb) str1 = " va_nll_bound : {}".format(va_costs[1]) str2 = " va_nll_term : {}".format(va_costs[2]) str3 = " va_kld_q2p : {}".format(va_costs[3]) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() # draw some independent samples from the model Xb = to_fX(Xva[:100]) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=None) samples, _ = model.do_sample(Xb, Mb) n_iter, N, D = samples.shape samples = samples.reshape( (n_iter, N, 28, 28) ) for j in xrange(n_iter): img = img_grid(samples[j,:,:,:]) img.save("TBSGM-IMP-MNIST-OD{0:d}-DP{1:d}-{2:s}-samples-{3:03d}.png".format(occ_dim, dp_int, step_type, j))
def test_imocld_mnist(step_type="add", attention=False): ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = "data/mnist.pkl.gz" datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] write_dim = 300 enc_dim = 300 dec_dim = 300 mix_dim = 20 z_dim = 100 n_iter = 16 rnninits = {"weights_init": IsotropicGaussian(0.01), "biases_init": Constant(0.0)} inits = {"weights_init": IsotropicGaussian(0.01), "biases_init": Constant(0.0)} att_tag = "NA" # attention not implemented yet # setup the reader and writer (shared by primary and guide policies) read_dim = 2 * x_dim # dimension of output from reader_mlp reader_mlp = Reader(x_dim=x_dim, dec_dim=dec_dim, **inits) writer_mlp = MLP([None, None], [dec_dim, write_dim, x_dim], name="writer_mlp", **inits) # mlps for setting conditionals over z_mix mix_var_mlp = CondNet([Tanh()], [x_dim, 250, mix_dim], name="mix_var_mlp", **inits) mix_enc_mlp = CondNet([Tanh()], [x_dim, 250, mix_dim], name="mix_enc_mlp", **inits) # mlp for decoding z_mix into a distribution over initial LSTM states mix_dec_mlp = MLP( [Tanh(), Tanh()], [mix_dim, 250, (2 * enc_dim + 2 * dec_dim + 2 * enc_dim + mix_dim)], name="mix_dec_mlp", **inits ) # mlps for processing inputs to LSTMs var_mlp_in = MLP([Identity()], [(read_dim + dec_dim + mix_dim), 4 * enc_dim], name="var_mlp_in", **inits) enc_mlp_in = MLP([Identity()], [(read_dim + dec_dim + mix_dim), 4 * enc_dim], name="enc_mlp_in", **inits) dec_mlp_in = MLP([Identity()], [z_dim, 4 * dec_dim], name="dec_mlp_in", **inits) # mlps for turning LSTM outputs into conditionals over z_gen var_mlp_out = CondNet([], [enc_dim, z_dim], name="var_mlp_out", **inits) enc_mlp_out = CondNet([], [enc_dim, z_dim], name="enc_mlp_out", **inits) # LSTMs for the actual LSTMs (obviously, perhaps) var_rnn = BiasedLSTM(dim=enc_dim, ig_bias=2.0, fg_bias=2.0, name="var_rnn", **rnninits) enc_rnn = BiasedLSTM(dim=enc_dim, ig_bias=2.0, fg_bias=2.0, name="enc_rnn", **rnninits) dec_rnn = BiasedLSTM(dim=dec_dim, ig_bias=2.0, fg_bias=2.0, name="dec_rnn", **rnninits) draw = IMoCLDrawModels( n_iter, step_type=step_type, # step_type can be 'add' or 'jump' reader_mlp=reader_mlp, writer_mlp=writer_mlp, mix_enc_mlp=mix_enc_mlp, mix_dec_mlp=mix_dec_mlp, mix_var_mlp=mix_var_mlp, enc_mlp_in=enc_mlp_in, enc_mlp_out=enc_mlp_out, enc_rnn=enc_rnn, dec_mlp_in=dec_mlp_in, dec_rnn=dec_rnn, var_mlp_in=var_mlp_in, var_mlp_out=var_mlp_out, var_rnn=var_rnn, ) draw.initialize() # build the cost gradients, training function, samplers, etc. draw.build_model_funcs() # sample several interchangeable versions of the model conditions = [{"occ_dim": 0, "drop_prob": 0.8}, {"occ_dim": 16, "drop_prob": 0.0}] for cond_dict in conditions: occ_dim = cond_dict["occ_dim"] drop_prob = cond_dict["drop_prob"] dp_int = int(100.0 * drop_prob) draw.load_model_params( f_name="TBCLM_IMP_MNIST_PARAMS_OD{}_DP{}_{}_{}.pkl".format(occ_dim, dp_int, step_type, att_tag) ) # draw some independent samples from the model Xva = row_shuffle(Xva) Xb = to_fX(Xva[:128]) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, occ_dim=occ_dim, data_mean=None) Xb = np.repeat(Xb, 2, axis=0) Mb = np.repeat(Mb, 2, axis=0) samples = draw.do_sample(Xb, Mb) # save the samples to a pkl file, in their numpy array form sample_pkl_name = "IMP-MNIST-OD{0:d}-DP{1:d}-{2:s}.pkl".format(occ_dim, dp_int, step_type) f_handle = file(sample_pkl_name, "wb") cPickle.dump(samples, f_handle, protocol=-1) f_handle.close() print("Saved some samples in: {}".format(sample_pkl_name)) return
def test_tfd(step_type='add', occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_OD{}_DP{}_{}_NA".format(RESULT_PATH, occ_dim, dp_int, step_type) ########################## # Get some training data # ########################## data_file = 'data/tfd_data_48x48.pkl' dataset = load_tfd(tfd_pkl_name=data_file, which_set='unlabeled', fold='all') Xtr_unlabeled = dataset[0] dataset = load_tfd(tfd_pkl_name=data_file, which_set='train', fold='all') Xtr_train = dataset[0] Xtr = np.vstack([Xtr_unlabeled, Xtr_train]) dataset = load_tfd(tfd_pkl_name=data_file, which_set='valid', fold='all') Xva = dataset[0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX( all_pix_mean * np.ones((Xtr.shape[1],)) ) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ obs_dim = Xtr.shape[1] z_dim = 200 imp_steps = 6 init_scale = 1.0 x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') x_mask_sym = T.matrix('x_mask_sym') ################# # p_zi_given_xi # ################# params = {} shared_config = [obs_dim, 1500, 1500] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_zi_given_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_zi_given_xi.init_biases(0.2) ################### # p_xip1_given_zi # ################### params = {} shared_config = [z_dim, 1500, 1500] output_config = [obs_dim, obs_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_xip1_given_zi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_xip1_given_zi.init_biases(0.2) ################### # q_zi_given_x_xi # ################### params = {} shared_config = [(obs_dim + obs_dim), 1500, 1500] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_zi_given_x_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_zi_given_x_xi.init_biases(0.2) ########################################################### # Define parameters for the GPSImputer, and initialize it # ########################################################### print("Building the GPSImputer...") gpsi_params = {} gpsi_params['obs_dim'] = obs_dim gpsi_params['z_dim'] = z_dim gpsi_params['imp_steps'] = imp_steps gpsi_params['step_type'] = step_type gpsi_params['x_type'] = 'bernoulli' gpsi_params['obs_transform'] = 'sigmoid' GPSI = GPSImputer(rng=rng, x_in=x_in_sym, x_out=x_out_sym, x_mask=x_mask_sym, \ p_zi_given_xi=p_zi_given_xi, \ p_xip1_given_zi=p_xip1_given_zi, \ q_zi_given_x_xi=q_zi_given_x_xi, \ params=gpsi_params, \ shared_param_dicts=None) # # test model saving # print("Testing model save to file...") # GPSI.save_to_file("AAA_GPSI_SAVE_TEST.pkl") # # test model loading # print("Testing model load from file...") # GPSI = load_gpsimputer_from_file(f_name="AAA_GPSI_SAVE_TEST.pkl", rng=rng) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') costs = [0. for i in range(10)] learn_rate = 0.0002 momentum = 0.5 batch_idx = np.arange(batch_size) + tr_samples for i in range(200005): scale = min(1.0, ((i+1) / 5000.0)) if (((i + 1) % 15000) == 0): learn_rate = learn_rate * 0.92 if (i > 10000): momentum = 0.90 else: momentum = 0.50 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update GPSI.set_sgd_params(lr=scale*learn_rate, \ mom_1=scale*momentum, mom_2=0.98) GPSI.set_train_switch(1.0) GPSI.set_lam_nll(lam_nll=1.0) GPSI.set_lam_kld(lam_kld_p=0.1, lam_kld_q=0.9) GPSI.set_lam_l2w(1e-4) # perform a minibatch update and record the cost for this batch xb = to_fX( Xtr.take(batch_idx, axis=0) ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = GPSI.train_joint(xi, xo, xm, batch_reps) # do diagnostics and general training tracking costs = [(costs[j] + result[j]) for j in range(len(result)-1)] if ((i % 250) == 0): costs = [(v / 250.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " joint_cost: {0:.4f}".format(costs[0]) str3 = " nll_bound : {0:.4f}".format(costs[1]) str4 = " nll_cost : {0:.4f}".format(costs[2]) str5 = " kld_cost : {0:.4f}".format(costs[3]) str6 = " reg_cost : {0:.4f}".format(costs[4]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva[0:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll, kld = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() GPSI.save_to_file("{}_PARAMS.pkl".format(result_tag)) if ((i % 20000) == 0): # Get some validation samples for evaluating model performance xb = to_fX( Xva[0:100] ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) xi = np.repeat(xi, 2, axis=0) xo = np.repeat(xo, 2, axis=0) xm = np.repeat(xm, 2, axis=0) # draw some sample imputations from the model samp_count = xi.shape[0] _, model_samps = GPSI.sample_imputer(xi, xo, xm, use_guide_policy=False) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "{0:s}_samples_ng_b{1:d}.png".format(result_tag, i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # get visualizations of policy parameters file_name = "{0:s}_gen_gen_weights_b{1:d}.png".format(result_tag, i) W = GPSI.gen_gen_weights.get_value(borrow=False) utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20) file_name = "{0:s}_gen_inf_weights_b{1:d}.png".format(result_tag, i) W = GPSI.gen_inf_weights.get_value(borrow=False).T utils.visualize_samples(W[:,:obs_dim], file_name, num_rows=20)
def test_imocld_mnist(step_type='add', attention=False): ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] write_dim = 300 enc_dim = 300 dec_dim = 300 mix_dim = 20 z_dim = 100 n_iter = 16 rnninits = { 'weights_init': IsotropicGaussian(0.01), 'biases_init': Constant(0.), } inits = { 'weights_init': IsotropicGaussian(0.01), 'biases_init': Constant(0.), } att_tag = "NA" # attention not implemented yet # setup the reader and writer (shared by primary and guide policies) read_dim = 2*x_dim # dimension of output from reader_mlp reader_mlp = Reader(x_dim=x_dim, dec_dim=dec_dim, **inits) writer_mlp = MLP([None, None], [dec_dim, write_dim, x_dim], \ name="writer_mlp", **inits) # mlps for setting conditionals over z_mix mix_var_mlp = CondNet([Tanh()], [x_dim, 250, mix_dim], \ name="mix_var_mlp", **inits) mix_enc_mlp = CondNet([Tanh()], [x_dim, 250, mix_dim], \ name="mix_enc_mlp", **inits) # mlp for decoding z_mix into a distribution over initial LSTM states mix_dec_mlp = MLP([Tanh(), Tanh()], \ [mix_dim, 250, (2*enc_dim + 2*dec_dim + 2*enc_dim + mix_dim)], \ name="mix_dec_mlp", **inits) # mlps for processing inputs to LSTMs var_mlp_in = MLP([Identity()], [(read_dim + dec_dim + mix_dim), 4*enc_dim], \ name="var_mlp_in", **inits) enc_mlp_in = MLP([Identity()], [(read_dim + dec_dim + mix_dim), 4*enc_dim], \ name="enc_mlp_in", **inits) dec_mlp_in = MLP([Identity()], [ z_dim, 4*dec_dim], \ name="dec_mlp_in", **inits) # mlps for turning LSTM outputs into conditionals over z_gen var_mlp_out = CondNet([], [enc_dim, z_dim], name="var_mlp_out", **inits) enc_mlp_out = CondNet([], [enc_dim, z_dim], name="enc_mlp_out", **inits) # LSTMs for the actual LSTMs (obviously, perhaps) var_rnn = BiasedLSTM(dim=enc_dim, ig_bias=2.0, fg_bias=2.0, \ name="var_rnn", **rnninits) enc_rnn = BiasedLSTM(dim=enc_dim, ig_bias=2.0, fg_bias=2.0, \ name="enc_rnn", **rnninits) dec_rnn = BiasedLSTM(dim=dec_dim, ig_bias=2.0, fg_bias=2.0, \ name="dec_rnn", **rnninits) draw = IMoCLDrawModels( n_iter, step_type=step_type, # step_type can be 'add' or 'jump' reader_mlp=reader_mlp, writer_mlp=writer_mlp, mix_enc_mlp=mix_enc_mlp, mix_dec_mlp=mix_dec_mlp, mix_var_mlp=mix_var_mlp, enc_mlp_in=enc_mlp_in, enc_mlp_out=enc_mlp_out, enc_rnn=enc_rnn, dec_mlp_in=dec_mlp_in, dec_rnn=dec_rnn, var_mlp_in=var_mlp_in, var_mlp_out=var_mlp_out, var_rnn=var_rnn) draw.initialize() # build the cost gradients, training function, samplers, etc. draw.build_model_funcs() # sample several interchangeable versions of the model conditions = [{'occ_dim': 0, 'drop_prob': 0.8}, \ {'occ_dim': 16, 'drop_prob': 0.0}] for cond_dict in conditions: occ_dim = cond_dict['occ_dim'] drop_prob = cond_dict['drop_prob'] dp_int = int(100.0 * drop_prob) draw.load_model_params(f_name="TBCLM_IMP_MNIST_PARAMS_OD{}_DP{}_{}_{}.pkl".format(occ_dim, dp_int, step_type, att_tag)) # draw some independent samples from the model Xva = row_shuffle(Xva) Xb = to_fX(Xva[:128]) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=None) Xb = np.repeat(Xb, 2, axis=0) Mb = np.repeat(Mb, 2, axis=0) samples, _ = draw.do_sample(Xb, Mb) # save the samples to a pkl file, in their numpy array form sample_pkl_name = "IMP-MNIST-OD{0:d}-DP{1:d}-{2:s}.pkl".format(occ_dim, dp_int, step_type) f_handle = file(sample_pkl_name, 'wb') cPickle.dump(samples, f_handle, protocol=-1) f_handle.close() print("Saved some samples in: {}".format(sample_pkl_name)) return
def test_imocld_imp_mnist(step_type='add', occ_dim=14, drop_prob=0.0, attention=False): ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xte = datasets[2][0] # Merge validation set and training set, and test on test set. Xtr = np.concatenate((Xtr, Xva), axis=0) Xva = Xte Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 200 ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] write_dim = 300 enc_dim = 300 dec_dim = 300 mix_dim = 20 z_dim = 100 n_iter = 25 dp_int = int(100.0 * drop_prob) rnninits = { 'weights_init': IsotropicGaussian(0.01), 'biases_init': Constant(0.), } inits = { 'weights_init': IsotropicGaussian(0.01), 'biases_init': Constant(0.), } att_tag = "NA" # attention not implemented yet # setup the reader and writer (shared by primary and guide policies) read_dim = 2 * x_dim # dimension of output from reader_mlp reader_mlp = Reader(x_dim=x_dim, dec_dim=dec_dim, **inits) writer_mlp = MLP([None, None], [dec_dim, write_dim, x_dim], \ name="writer_mlp", **inits) # mlps for setting conditionals over z_mix mix_var_mlp = CondNet([Tanh()], [x_dim, 250, mix_dim], \ name="mix_var_mlp", **inits) mix_enc_mlp = CondNet([Tanh()], [x_dim, 250, mix_dim], \ name="mix_enc_mlp", **inits) # mlp for decoding z_mix into a distribution over initial LSTM states mix_dec_mlp = MLP([Tanh(), Tanh()], \ [mix_dim, 250, (2*enc_dim + 2*dec_dim + 2*enc_dim)], \ name="mix_dec_mlp", **inits) # mlps for processing inputs to LSTMs var_mlp_in = MLP([Identity()], [(read_dim + dec_dim), 4*enc_dim], \ name="var_mlp_in", **inits) enc_mlp_in = MLP([Identity()], [(read_dim + dec_dim), 4*enc_dim], \ name="enc_mlp_in", **inits) dec_mlp_in = MLP([Identity()], [ z_dim, 4*dec_dim], \ name="dec_mlp_in", **inits) # mlps for turning LSTM outputs into conditionals over z_gen var_mlp_out = CondNet([], [enc_dim, z_dim], name="var_mlp_out", **inits) enc_mlp_out = CondNet([], [enc_dim, z_dim], name="enc_mlp_out", **inits) # LSTMs for the actual LSTMs (obviously, perhaps) var_rnn = BiasedLSTM(dim=enc_dim, ig_bias=2.0, fg_bias=2.0, \ name="var_rnn", **rnninits) enc_rnn = BiasedLSTM(dim=enc_dim, ig_bias=2.0, fg_bias=2.0, \ name="enc_rnn", **rnninits) dec_rnn = BiasedLSTM(dim=dec_dim, ig_bias=2.0, fg_bias=2.0, \ name="dec_rnn", **rnninits) draw = IMoCLDrawModels( n_iter, step_type=step_type, # step_type can be 'add' or 'jump' reader_mlp=reader_mlp, writer_mlp=writer_mlp, mix_enc_mlp=mix_enc_mlp, mix_dec_mlp=mix_dec_mlp, mix_var_mlp=mix_var_mlp, enc_mlp_in=enc_mlp_in, enc_mlp_out=enc_mlp_out, enc_rnn=enc_rnn, dec_mlp_in=dec_mlp_in, dec_rnn=dec_rnn, var_mlp_in=var_mlp_in, var_mlp_out=var_mlp_out, var_rnn=var_rnn) draw.initialize() # build the cost gradients, training function, samplers, etc. draw.build_model_funcs() #draw.load_model_params(f_name="TBCLM_IMP_MNIST_PARAMS_OD{}_DP{}_{}_{}.pkl".format(occ_dim, dp_int, step_type, att_tag)) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ print("Beginning to train the model...") out_file = open( "TBCLM_IMP_MNIST_RESULTS_OD{}_DP{}_{}_{}.txt".format( occ_dim, dp_int, step_type, att_tag), 'wb') out_file.flush() costs = [0. for i in range(10)] learn_rate = 0.0002 momentum = 0.9 batch_idx = np.arange(batch_size) + tr_samples for i in range(250000): scale = min(1.0, ((i + 1) / 1000.0)) if (((i + 1) % 10000) == 0): learn_rate = learn_rate * 0.95 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update zero_ary = np.zeros((1, )) draw.lr.set_value(to_fX(zero_ary + learn_rate)) draw.mom_1.set_value(to_fX(zero_ary + momentum)) draw.mom_2.set_value(to_fX(zero_ary + 0.99)) # perform a minibatch update and record the cost for this batch Xb = to_fX(Xtr.take(batch_idx, axis=0)) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=None) result = draw.train_joint(Xb, Mb) costs = [(costs[j] + result[j]) for j in range(len(result))] if ((i % 200) == 0): costs = [(v / 200.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " total_cost: {0:.4f}".format(costs[0]) str3 = " nll_bound : {0:.4f}".format(costs[1]) str4 = " nll_term : {0:.4f}".format(costs[2]) str5 = " kld_q2p : {0:.4f}".format(costs[3]) str6 = " kld_p2q : {0:.4f}".format(costs[4]) str7 = " reg_term : {0:.4f}".format(costs[5]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6, str7]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): draw.save_model_params( "TBCLM_IMP_MNIST_PARAMS_OD{}_DP{}_{}_{}.pkl".format( occ_dim, dp_int, step_type, att_tag)) # compute a small-sample estimate of NLL bound on validation set Xva = row_shuffle(Xva) Xb = to_fX(Xva[:5000]) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=None) va_costs = draw.compute_nll_bound(Xb, Mb) str1 = " va_nll_bound : {}".format(va_costs[1]) str2 = " va_nll_term : {}".format(va_costs[2]) str3 = " va_kld_q2p : {}".format(va_costs[3]) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() # draw some independent samples from the model Xb = to_fX(Xva[:100]) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=None) samples, _ = draw.do_sample(Xb, Mb) n_iter, N, D = samples.shape samples = samples.reshape((n_iter, N, 28, 28)) for j in xrange(n_iter): img = img_grid(samples[j, :, :, :]) img.save( "TBCLM-IMP-MNIST-OD{0:d}-DP{1:d}-{2:s}-samples-{3:03d}.png" .format(occ_dim, dp_int, step_type, j))
def test_mnist(step_type='add', imp_steps=6, occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_conv_bn_OD{}_DP{}_IS{}_{}_NA".format( RESULT_PATH, occ_dim, dp_int, imp_steps, step_type) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xte = datasets[2][0] # Merge validation set and training set, and test on test set. Xtr = np.concatenate((Xtr, Xva), axis=0) Xva = Xte Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 200 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1], ))) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] z_dim = 100 init_scale = 1.0 use_bn = True x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') x_mask_sym = T.matrix('x_mask_sym') ################# # p_zi_given_xi # ################# params = {} shared_config = \ [ {'layer_type': 'conv', 'in_chans': 1, # in shape: (batch, 784) 'out_chans': 64, # out shape: (batch, 64, 14, 14) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'double', 'apply_bn': use_bn, 'shape_func_in': lambda x: T.reshape(x, (-1, 1, 28, 28))}, \ {'layer_type': 'conv', 'in_chans': 64, # in shape: (batch, 64, 14, 14) 'out_chans': 128, # out shape: (batch, 128, 7, 7) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'double', 'apply_bn': use_bn, 'shape_func_out': lambda x: T.flatten(x, 2)}, \ {'layer_type': 'fc', 'in_chans': 128*7*7, 'out_chans': 256, 'activation': relu_actfun, 'apply_bn': use_bn} ] output_config = \ [ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': z_dim, 'activation': relu_actfun, 'apply_bn': False}, \ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': z_dim, 'activation': relu_actfun, 'apply_bn': False} ] params['shared_config'] = shared_config params['output_config'] = output_config params['init_scale'] = init_scale params['build_theano_funcs'] = False p_zi_given_xi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_zi_given_xi.init_biases(0.0) ################### # p_sip1_given_zi # ################### params = {} shared_config = \ [ {'layer_type': 'fc', 'in_chans': z_dim, 'out_chans': 256, 'activation': relu_actfun, 'apply_bn': use_bn}, \ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': 7*7*128, 'activation': relu_actfun, 'apply_bn': use_bn, 'shape_func_out': lambda x: T.reshape(x, (-1, 128, 7, 7))}, \ {'layer_type': 'conv', 'in_chans': 128, # in shape: (batch, 128, 7, 7) 'out_chans': 64, # out shape: (batch, 64, 14, 14) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'half', 'apply_bn': use_bn} ] output_config = \ [ {'layer_type': 'conv', 'in_chans': 64, # in shape: (batch, 64, 14, 14) 'out_chans': 1, # out shape: (batch, 1, 28, 28) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'half', 'apply_bn': False, 'shape_func_out': lambda x: T.flatten(x, 2)}, \ {'layer_type': 'conv', 'in_chans': 64, 'out_chans': 1, 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'half', 'apply_bn': False, 'shape_func_out': lambda x: T.flatten(x, 2)}, \ {'layer_type': 'conv', 'in_chans': 64, 'out_chans': 1, 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'half', 'apply_bn': False, 'shape_func_out': lambda x: T.flatten(x, 2)} ] params['shared_config'] = shared_config params['output_config'] = output_config params['init_scale'] = init_scale params['build_theano_funcs'] = False p_sip1_given_zi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_sip1_given_zi.init_biases(0.0) ################# # q_zi_given_xi # ################# params = {} shared_config = \ [ {'layer_type': 'conv', 'in_chans': 2, # in shape: (batch, 784+784) 'out_chans': 64, # out shape: (batch, 64, 14, 14) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'double', 'apply_bn': use_bn, 'shape_func_in': lambda x: T.reshape(x, (-1, 2, 28, 28))}, \ {'layer_type': 'conv', 'in_chans': 64, # in shape: (batch, 64, 14, 14) 'out_chans': 128, # out shape: (batch, 128, 7, 7) 'activation': relu_actfun, 'filt_dim': 5, 'conv_stride': 'double', 'apply_bn': use_bn, 'shape_func_out': lambda x: T.flatten(x, 2)}, \ {'layer_type': 'fc', 'in_chans': 128*7*7, 'out_chans': 256, 'activation': relu_actfun, 'apply_bn': use_bn} ] output_config = \ [ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': z_dim, 'activation': relu_actfun, 'apply_bn': False}, \ {'layer_type': 'fc', 'in_chans': 256, 'out_chans': z_dim, 'activation': relu_actfun, 'apply_bn': False} ] params['shared_config'] = shared_config params['output_config'] = output_config params['init_scale'] = init_scale params['build_theano_funcs'] = False q_zi_given_xi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_zi_given_xi.init_biases(0.0) ########################################################### # Define parameters for the GPSImputer, and initialize it # ########################################################### print("Building the GPSImputer...") gpsi_params = {} gpsi_params['x_dim'] = x_dim gpsi_params['z_dim'] = z_dim # switch between direct construction and construction via p_x_given_si gpsi_params['imp_steps'] = imp_steps gpsi_params['step_type'] = step_type gpsi_params['x_type'] = 'bernoulli' gpsi_params['obs_transform'] = 'sigmoid' GPSI = GPSImputer(rng=rng, x_in=x_in_sym, x_out=x_out_sym, x_mask=x_mask_sym, p_zi_given_xi=p_zi_given_xi, p_sip1_given_zi=p_sip1_given_zi, q_zi_given_xi=q_zi_given_xi, params=gpsi_params, shared_param_dicts=None) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') costs = [0. for i in range(10)] learn_rate = 0.0001 momentum = 0.90 batch_idx = np.arange(batch_size) + tr_samples for i in range(200000): scale = min(1.0, ((i + 1) / 5000.0)) if (((i + 1) % 15000) == 0): learn_rate = learn_rate * 0.95 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update GPSI.set_sgd_params(lr=scale*learn_rate, \ mom_1=scale*momentum, mom_2=0.98) GPSI.set_train_switch(1.0) GPSI.set_lam_nll(lam_nll=1.0) GPSI.set_lam_kld(lam_kld_q=1.0, lam_kld_p=0.1, lam_kld_g=0.0) GPSI.set_lam_l2w(1e-5) # perform a minibatch update and record the cost for this batch xb = to_fX(Xtr.take(batch_idx, axis=0)) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = GPSI.train_joint(xi, xo, xm, batch_reps) # do diagnostics and general training tracking costs = [(costs[j] + result[j]) for j in range(len(result) - 1)] if ((i % 500) == 0): costs = [(v / 500.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " joint_cost: {0:.4f}".format(costs[0]) str3 = " nll_bound : {0:.4f}".format(costs[1]) str4 = " nll_cost : {0:.4f}".format(costs[2]) str5 = " kld_cost : {0:.4f}".format(costs[3]) str6 = " reg_cost : {0:.4f}".format(costs[4]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva[0:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll, kld = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() if ((i % 2000) == 0): #GPSI.save_to_file("{}_PARAMS.pkl".format(result_tag)) # Get some validation samples for evaluating model performance xb = to_fX(Xva[0:100]) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) xi = np.repeat(xi, 2, axis=0) xo = np.repeat(xo, 2, axis=0) xm = np.repeat(xm, 2, axis=0) # draw some sample imputations from the model samp_count = xi.shape[0] _, model_samps = GPSI.sample_imputer(xi, xo, xm, use_guide_policy=False) seq_len = len(model_samps) seq_samps = np.zeros( (seq_len * samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "{0:s}_samples_ng_b{1:d}.png".format(result_tag, i) utils.visualize_samples(seq_samps, file_name, num_rows=20)
def test_svhn_results(step_type='add', occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_OD{}_DP{}_{}_NA".format(RESULT_PATH, occ_dim, dp_int, step_type) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) tr_file = 'data/svhn_train_gray.pkl' te_file = 'data/svhn_test_gray.pkl' ex_file = 'data/svhn_extra_gray.pkl' data = load_svhn_gray(tr_file, te_file, ex_file=ex_file, ex_count=200000) Xtr = to_fX(shift_and_scale_into_01(np.vstack([data['Xtr'], data['Xex']]))) Xva = to_fX(shift_and_scale_into_01(data['Xte'])) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1], ))) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] z_dim = 200 imp_steps = 6 init_scale = 1.0 x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') x_mask_sym = T.matrix('x_mask_sym') # Load parameters from a previously trained model print("Testing model load from file...") GPSI = load_gpsimputer_from_file(f_name="{}_PARAMS.pkl".format(result_tag), \ rng=rng) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_FINAL_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') Xva = row_shuffle(Xva) # record an estimate of performance on the test set str0 = "GUIDED SAMPLE BOUND:" print(str0) xi, xo, xm = construct_masked_data(Xva[:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_0, kld_0 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=True) xi, xo, xm = construct_masked_data(Xva[5000:], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_1, kld_1 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=True) nll = np.concatenate((nll_0, nll_1)) kld = np.concatenate((kld_0, kld_1)) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str0, str1, str2, str3]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() # record an estimate of performance on the test set str0 = "UNGUIDED SAMPLE BOUND:" print(str0) xi, xo, xm = construct_masked_data(Xva[:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_0, kld_0 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=False) xi, xo, xm = construct_masked_data(Xva[5000:], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_1, kld_1 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=False) nll = np.concatenate((nll_0, nll_1)) kld = np.concatenate((kld_0, kld_1)) str1 = " va_nll_bound : {}".format(np.mean(nll)) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str0, str1, str2, str3]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush()
def test_mnist(step_type='add', imp_steps=6, occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_OD{}_DP{}_IS{}_{}_NA".format(RESULT_PATH, occ_dim, dp_int, imp_steps, step_type) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) Xtr, Xva, Xte = load_binarized_mnist(data_path='./data/') Xtr = np.vstack((Xtr, Xva)) Xva = Xte #del Xte tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] ########################## # Get some training data # ########################## # rng = np.random.RandomState(1234) # dataset = 'data/mnist.pkl.gz' # datasets = load_udm(dataset, as_shared=False, zero_mean=False) # Xtr = datasets[0][0] # Xva = datasets[1][0] # Xte = datasets[2][0] # # Merge validation set and training set, and test on test set. # #Xtr = np.concatenate((Xtr, Xva), axis=0) # #Xva = Xte # Xtr = to_fX(shift_and_scale_into_01(Xtr)) # Xva = to_fX(shift_and_scale_into_01(Xva)) # tr_samples = Xtr.shape[0] # va_samples = Xva.shape[0] batch_size = 200 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX( all_pix_mean * np.ones((Xtr.shape[1],)) ) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] s_dim = x_dim h_dim = 50 z_dim = 100 init_scale = 0.6 x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') x_mask_sym = T.matrix('x_mask_sym') ############### # p_h_given_x # ############### params = {} shared_config = [x_dim, 250] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = 'xg' #init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_h_given_x = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_h_given_x.init_biases(0.0) ################ # p_s0_given_h # ################ params = {} shared_config = [h_dim, 250] output_config = [s_dim, s_dim, s_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = 'xg' #init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_s0_given_h = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_s0_given_h.init_biases(0.0) ################# # p_zi_given_xi # ################# params = {} shared_config = [(x_dim + x_dim), 500, 500] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_zi_given_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_zi_given_xi.init_biases(0.0) ################### # p_sip1_given_zi # ################### params = {} shared_config = [z_dim, 500, 500] output_config = [s_dim, s_dim, s_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_sip1_given_zi = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_sip1_given_zi.init_biases(0.0) ################ # p_x_given_si # ################ params = {} shared_config = [s_dim] output_config = [x_dim, x_dim] params['shared_config'] = shared_config params['output_config'] = output_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False p_x_given_si = HydraNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) p_x_given_si.init_biases(0.0) ############### # q_h_given_x # ############### params = {} shared_config = [x_dim, 250] top_config = [shared_config[-1], h_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = 'xg' #init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_h_given_x = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_h_given_x.init_biases(0.0) ################# # q_zi_given_xi # ################# params = {} shared_config = [(x_dim + x_dim), 500, 500] top_config = [shared_config[-1], z_dim] params['shared_config'] = shared_config params['mu_config'] = top_config params['sigma_config'] = top_config params['activation'] = tanh_actfun #relu_actfun params['init_scale'] = init_scale params['vis_drop'] = 0.0 params['hid_drop'] = 0.0 params['bias_noise'] = 0.0 params['input_noise'] = 0.0 params['build_theano_funcs'] = False q_zi_given_xi = InfNet(rng=rng, Xd=x_in_sym, \ params=params, shared_param_dicts=None) q_zi_given_xi.init_biases(0.0) ########################################################### # Define parameters for the GPSImputer, and initialize it # ########################################################### print("Building the GPSImputer...") gpsi_params = {} gpsi_params['x_dim'] = x_dim gpsi_params['h_dim'] = h_dim gpsi_params['z_dim'] = z_dim gpsi_params['s_dim'] = s_dim # switch between direct construction and construction via p_x_given_si gpsi_params['use_p_x_given_si'] = False gpsi_params['imp_steps'] = imp_steps gpsi_params['step_type'] = step_type gpsi_params['x_type'] = 'bernoulli' gpsi_params['obs_transform'] = 'sigmoid' GPSI = GPSImputerWI(rng=rng, x_in=x_in_sym, x_out=x_out_sym, x_mask=x_mask_sym, \ p_h_given_x=p_h_given_x, \ p_s0_given_h=p_s0_given_h, \ p_zi_given_xi=p_zi_given_xi, \ p_sip1_given_zi=p_sip1_given_zi, \ p_x_given_si=p_x_given_si, \ q_h_given_x=q_h_given_x, \ q_zi_given_xi=q_zi_given_xi, \ params=gpsi_params, \ shared_param_dicts=None) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') costs = [0. for i in range(10)] learn_rate = 0.0002 momentum = 0.5 batch_idx = np.arange(batch_size) + tr_samples for i in range(250000): scale = min(1.0, ((i+1) / 5000.0)) lam_scale = 1.0 - min(1.0, ((i+1) / 100000.0)) # decays from 1.0->0.0 if (((i + 1) % 15000) == 0): learn_rate = learn_rate * 0.93 if (i > 10000): momentum = 0.90 else: momentum = 0.75 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update GPSI.set_sgd_params(lr=scale*learn_rate, \ mom_1=scale*momentum, mom_2=0.98) GPSI.set_train_switch(1.0) GPSI.set_lam_nll(lam_nll=1.0) GPSI.set_lam_kld(lam_kld_p=0.05, lam_kld_q=0.95, \ lam_kld_g=(0.1 * lam_scale), lam_kld_s=(0.1 * lam_scale)) GPSI.set_lam_l2w(1e-5) # perform a minibatch update and record the cost for this batch xb = to_fX( Xtr.take(batch_idx, axis=0) ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) result = GPSI.train_joint(xi, xo, xm, batch_reps) # do diagnostics and general training tracking costs = [(costs[j] + result[j]) for j in range(len(result)-1)] if ((i % 250) == 0): costs = [(v / 250.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " joint_cost: {0:.4f}".format(costs[0]) str3 = " nll_bound : {0:.4f}".format(costs[1]) str4 = " nll_cost : {0:.4f}".format(costs[2]) str5 = " kld_cost : {0:.4f}".format(costs[3]) str6 = " reg_cost : {0:.4f}".format(costs[4]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): Xva = row_shuffle(Xva) # record an estimate of performance on the test set xi, xo, xm = construct_masked_data(Xva[0:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll, kld = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() if ((i % 2000) == 0): GPSI.save_to_file("{}_PARAMS.pkl".format(result_tag)) # Get some validation samples for evaluating model performance xb = to_fX( Xva[0:100] ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) xi = np.repeat(xi, 2, axis=0) xo = np.repeat(xo, 2, axis=0) xm = np.repeat(xm, 2, axis=0) # draw some sample imputations from the model samp_count = xi.shape[0] _, model_samps = GPSI.sample_imputer(xi, xo, xm, use_guide_policy=False) seq_len = len(model_samps) seq_samps = np.zeros((seq_len*samp_count, model_samps[0].shape[1])) idx = 0 for s1 in range(samp_count): for s2 in range(seq_len): seq_samps[idx] = model_samps[s2][s1] idx += 1 file_name = "{0:s}_samples_ng_b{1:d}.png".format(result_tag, i) utils.visualize_samples(seq_samps, file_name, num_rows=20) # show KLds and NLLs on a step-by-step basis xb = to_fX( Xva[0:1000] ) xi, xo, xm = construct_masked_data(xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) step_costs = GPSI.compute_per_step_cost(xi, xo, xm) step_nlls = step_costs[0] step_klds = step_costs[1] step_nums = np.arange(step_nlls.shape[0]) file_name = "{0:s}_NLL_b{1:d}.png".format(result_tag, i) utils.plot_stem(step_nums, step_nlls, file_name) file_name = "{0:s}_KLD_b{1:d}.png".format(result_tag, i) utils.plot_stem(step_nums, step_klds, file_name)
def test_mnist_results(step_type='add', imp_steps=6, occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_OD{}_DP{}_IS{}_{}_NA".format(RESULT_PATH, occ_dim, dp_int, imp_steps, step_type) ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xte = datasets[2][0] # Merge validation set and training set, and test on test set. Xtr = np.concatenate((Xtr, Xva), axis=0) Xva = Xte Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 batch_reps = 1 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX(all_pix_mean * np.ones((Xtr.shape[1], ))) # Load parameters from a previously trained model print("Testing model load from file...") GPSI = load_gpsimputer_from_file(f_name="{}_PARAMS.pkl".format(result_tag), \ rng=rng) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_FINAL_RESULTS_NEW.txt".format(result_tag) out_file = open(log_name, 'wb') Xva = row_shuffle(Xva) # record an estimate of performance on the test set str0 = "GUIDED SAMPLE BOUND:" print(str0) xi, xo, xm = construct_masked_data(Xva[:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_0, kld_0 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=True) xi, xo, xm = construct_masked_data(Xva[5000:], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_1, kld_1 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=True) nll = np.concatenate((nll_0, nll_1)) kld = np.concatenate((kld_0, kld_1)) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str0, str1, str2, str3]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush() # record an estimate of performance on the test set str0 = "UNGUIDED SAMPLE BOUND:" print(str0) xi, xo, xm = construct_masked_data(Xva[:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_0, kld_0 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=False) xi, xo, xm = construct_masked_data(Xva[5000:], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_1, kld_1 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=False) nll = np.concatenate((nll_0, nll_1)) kld = np.concatenate((kld_0, kld_1)) str1 = " va_nll_bound : {}".format(np.mean(nll)) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str0, str1, str2, str3]) print(joint_str) out_file.write(joint_str + "\n") out_file.flush()
def test_imocld_imp_mnist(step_type='add', occ_dim=14, drop_prob=0.0, attention=False): ########################## # Get some training data # ########################## rng = np.random.RandomState(1234) dataset = 'data/mnist.pkl.gz' datasets = load_udm(dataset, as_shared=False, zero_mean=False) Xtr = datasets[0][0] Xva = datasets[1][0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ x_dim = Xtr.shape[1] write_dim = 300 enc_dim = 300 dec_dim = 300 mix_dim = 20 z_dim = 100 n_iter = 16 dp_int = int(100.0 * drop_prob) rnninits = { 'weights_init': IsotropicGaussian(0.01), 'biases_init': Constant(0.), } inits = { 'weights_init': IsotropicGaussian(0.01), 'biases_init': Constant(0.), } att_tag = "NA" # attention not implemented yet # setup the reader and writer (shared by primary and guide policies) read_dim = 2*x_dim # dimension of output from reader_mlp reader_mlp = Reader(x_dim=x_dim, dec_dim=dec_dim, **inits) writer_mlp = MLP([None, None], [dec_dim, write_dim, x_dim], \ name="writer_mlp", **inits) # mlps for setting conditionals over z_mix mix_var_mlp = CondNet([Tanh()], [x_dim, 250, mix_dim], \ name="mix_var_mlp", **inits) mix_enc_mlp = CondNet([Tanh()], [x_dim, 250, mix_dim], \ name="mix_enc_mlp", **inits) # mlp for decoding z_mix into a distribution over initial LSTM states mix_dec_mlp = MLP([Tanh(), Tanh()], \ [mix_dim, 250, (2*enc_dim + 2*dec_dim + 2*enc_dim)], \ name="mix_dec_mlp", **inits) # mlps for processing inputs to LSTMs var_mlp_in = MLP([Identity()], [(read_dim + dec_dim), 4*enc_dim], \ name="var_mlp_in", **inits) enc_mlp_in = MLP([Identity()], [(read_dim + dec_dim), 4*enc_dim], \ name="enc_mlp_in", **inits) dec_mlp_in = MLP([Identity()], [ z_dim, 4*dec_dim], \ name="dec_mlp_in", **inits) # mlps for turning LSTM outputs into conditionals over z_gen var_mlp_out = CondNet([], [enc_dim, z_dim], name="var_mlp_out", **inits) enc_mlp_out = CondNet([], [enc_dim, z_dim], name="enc_mlp_out", **inits) # LSTMs for the actual LSTMs (obviously, perhaps) var_rnn = BiasedLSTM(dim=enc_dim, ig_bias=2.0, fg_bias=2.0, \ name="var_rnn", **rnninits) enc_rnn = BiasedLSTM(dim=enc_dim, ig_bias=2.0, fg_bias=2.0, \ name="enc_rnn", **rnninits) dec_rnn = BiasedLSTM(dim=dec_dim, ig_bias=2.0, fg_bias=2.0, \ name="dec_rnn", **rnninits) draw = IMoCLDrawModels( n_iter, step_type=step_type, # step_type can be 'add' or 'jump' reader_mlp=reader_mlp, writer_mlp=writer_mlp, mix_enc_mlp=mix_enc_mlp, mix_dec_mlp=mix_dec_mlp, mix_var_mlp=mix_var_mlp, enc_mlp_in=enc_mlp_in, enc_mlp_out=enc_mlp_out, enc_rnn=enc_rnn, dec_mlp_in=dec_mlp_in, dec_rnn=dec_rnn, var_mlp_in=var_mlp_in, var_mlp_out=var_mlp_out, var_rnn=var_rnn) draw.initialize() # build the cost gradients, training function, samplers, etc. draw.build_model_funcs() #draw.load_model_params(f_name="TBCLM_IMP_PARAMS_OD{}_DP{}_{}_{}.pkl".format(occ_dim, dp_int, step_type, att_tag)) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ print("Beginning to train the model...") out_file = open("TBCLM_IMP_RESULTS_OD{}_DP{}_{}_{}.txt".format(occ_dim, dp_int, step_type, att_tag), 'wb') out_file.flush() costs = [0. for i in range(10)] learn_rate = 0.0002 momentum = 0.5 batch_idx = np.arange(batch_size) + tr_samples for i in range(250000): scale = min(1.0, ((i+1) / 1000.0)) if (((i + 1) % 10000) == 0): learn_rate = learn_rate * 0.95 if (i > 10000): momentum = 0.90 else: momentum = 0.50 # get the indices of training samples for this batch update batch_idx += batch_size if (np.max(batch_idx) >= tr_samples): # we finished an "epoch", so we rejumble the training set Xtr = row_shuffle(Xtr) batch_idx = np.arange(batch_size) # set sgd and objective function hyperparams for this update zero_ary = np.zeros((1,)) draw.lr.set_value(to_fX(zero_ary + learn_rate)) draw.mom_1.set_value(to_fX(zero_ary + momentum)) draw.mom_2.set_value(to_fX(zero_ary + 0.99)) # perform a minibatch update and record the cost for this batch Xb = to_fX(Xtr.take(batch_idx, axis=0)) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=None) result = draw.train_joint(Xb, Mb) costs = [(costs[j] + result[j]) for j in range(len(result))] if ((i % 200) == 0): costs = [(v / 200.0) for v in costs] str1 = "-- batch {0:d} --".format(i) str2 = " total_cost: {0:.4f}".format(costs[0]) str3 = " nll_bound : {0:.4f}".format(costs[1]) str4 = " nll_term : {0:.4f}".format(costs[2]) str5 = " kld_q2p : {0:.4f}".format(costs[3]) str6 = " kld_p2q : {0:.4f}".format(costs[4]) str7 = " reg_term : {0:.4f}".format(costs[5]) joint_str = "\n".join([str1, str2, str3, str4, str5, str6, str7]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() costs = [0.0 for v in costs] if ((i % 1000) == 0): draw.save_model_params("TBCLM_IMP_PARAMS_OD{}_DP{}_{}_{}.pkl".format(occ_dim, dp_int, step_type, att_tag)) # compute a small-sample estimate of NLL bound on validation set Xva = row_shuffle(Xva) Xb = to_fX(Xva[:5000]) _, Xb, Mb = construct_masked_data(Xb, drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=None) va_costs = draw.compute_nll_bound(Xb, Mb) str1 = " va_nll_bound : {}".format(va_costs[1]) str2 = " va_nll_term : {}".format(va_costs[2]) str3 = " va_kld_q2p : {}".format(va_costs[3]) joint_str = "\n".join([str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush()
def test_tfd_results(step_type='add', occ_dim=15, drop_prob=0.0): ######################################### # Format the result tag more thoroughly # ######################################### dp_int = int(100.0 * drop_prob) result_tag = "{}GPSI_OD{}_DP{}_{}_NA".format(RESULT_PATH, occ_dim, dp_int, step_type) ########################## # Get some training data # ########################## data_file = 'data/tfd_data_48x48.pkl' dataset = load_tfd(tfd_pkl_name=data_file, which_set='unlabeled', fold='all') Xtr_unlabeled = dataset[0] dataset = load_tfd(tfd_pkl_name=data_file, which_set='train', fold='all') Xtr_train = dataset[0] Xtr = np.vstack([Xtr_unlabeled, Xtr_train]) dataset = load_tfd(tfd_pkl_name=data_file, which_set='valid', fold='all') Xva = dataset[0] Xtr = to_fX(shift_and_scale_into_01(Xtr)) Xva = to_fX(shift_and_scale_into_01(Xva)) tr_samples = Xtr.shape[0] va_samples = Xva.shape[0] batch_size = 250 all_pix_mean = np.mean(np.mean(Xtr, axis=1)) data_mean = to_fX( all_pix_mean * np.ones((Xtr.shape[1],)) ) ############################################################ # Setup some parameters for the Iterative Refinement Model # ############################################################ obs_dim = Xtr.shape[1] z_dim = 200 imp_steps = 6 init_scale = 1.0 x_in_sym = T.matrix('x_in_sym') x_out_sym = T.matrix('x_out_sym') x_mask_sym = T.matrix('x_mask_sym') # Load parameters from a previously trained model print("Testing model load from file...") GPSI = load_gpsimputer_from_file(f_name="{}_PARAMS.pkl".format(result_tag), \ rng=rng) ################################################################ # Apply some updates, to check that they aren't totally broken # ################################################################ log_name = "{}_FINAL_RESULTS.txt".format(result_tag) out_file = open(log_name, 'wb') Xva = row_shuffle(Xva) # record an estimate of performance on the test set str0 = "GUIDED SAMPLE BOUND:" print(str0) xi, xo, xm = construct_masked_data(Xva[:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_0, kld_0 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=True) xi, xo, xm = construct_masked_data(Xva[5000:], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_1, kld_1 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=True) nll = np.concatenate((nll_0, nll_1)) kld = np.concatenate((kld_0, kld_1)) vfe = np.mean(nll) + np.mean(kld) str1 = " va_nll_bound : {}".format(vfe) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str0, str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush() # record an estimate of performance on the test set str0 = "UNGUIDED SAMPLE BOUND:" print(str0) xi, xo, xm = construct_masked_data(Xva[:5000], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_0, kld_0 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=False) xi, xo, xm = construct_masked_data(Xva[5000:], drop_prob=drop_prob, \ occ_dim=occ_dim, data_mean=data_mean) nll_1, kld_1 = GPSI.compute_fe_terms(xi, xo, xm, sample_count=10, \ use_guide_policy=False) nll = np.concatenate((nll_0, nll_1)) kld = np.concatenate((kld_0, kld_1)) str1 = " va_nll_bound : {}".format(np.mean(nll)) str2 = " va_nll_term : {}".format(np.mean(nll)) str3 = " va_kld_q2p : {}".format(np.mean(kld)) joint_str = "\n".join([str0, str1, str2, str3]) print(joint_str) out_file.write(joint_str+"\n") out_file.flush()