rand_mse = np.linalg.norm(random_vectors, axis=2) factor = mse / rand_mse random_vectors *= factor[:, :, np.newaxis] rotated_generated_vectors = reference_data - random_vectors mse2 = np.linalg.norm(reference_data - rotated_generated_vectors, axis=2) shuffled_rotated_reference, shuffled_and_rotated_generated = shuffle( reference_data, rotated_generated_vectors, random_state=42) joint_names = list(np_file['joint_names']) activity = np_file['activity'].item().split("/")[-1] delta_t = np_file['delta_t'].item() fh.create_folder(normal_path) fh.create_folder(shuffled_path) fh.create_folder(rotated_path) fh.create_folder(shuffled_and_rotated_path) sp.print_stats(generated_data, reference_data, joint_names, activity, delta_t, loss_test_wrapper, save_matrices=False, target_path=normal_path) sp.print_stats(rotated_generated_vectors, reference_data, joint_names,
from Helpers import DataPreprocessor from Helpers import ModelWrappers from Helpers import Models import torch import sys import time from Helpers import FileHelpers og_folder = "TEMP_REMOVE" FileHelpers.create_folder(og_folder) FileHelpers.create_folder(og_folder + "/unity_motion_export") FileHelpers.create_folder(og_folder + "/stats") FileHelpers.create_folder(og_folder + "/videos_out") def test_folder_func(folder_name, FF_BATCH_SIZE): STACKCOUNT = 15 TARGET_FPS = 20 take_last = lambda x: og_folder + "/" + x.split('/')[-1].split('.')[ 0] + "_trained_on_" + folder_name.split("/")[-2] # eval_files = [ "E:/Master/Converted Mocap/Eyes_Japan_Dataset/hamada/greeting-01-hello-hamada_poses.npz", # "E:/Master/Converted Mocap/Eyes_Japan_Dataset/kudo/jump-12-boxer step-kudo_poses.npz", # "E:/Master/Converted Mocap/KIT/576/MarcusS_AdrianM11_poses.npz", # "E:/Master/Converted Mocap/KIT/513/balance_on_beam06_poses.npz", # "E:/Master/Converted Mocap/Eyes_Japan_Dataset/hamada/gesture_etc-14-apologize-hamada_poses.npz", # "E:/Master/Converted Mocap/Eyes_Japan_Dataset/kanno/walk-01-normal-kanno_poses.npz", # "E:/Master/Converted Mocap/Eyes_Japan_Dataset/takiguchi/pose-10-recall blackmagic-takiguchi_poses.npz", # "E:/Master/Converted Mocap/TotalCapture/s1/freestyle2_poses.npz",
if idx == 0: pass else: colorclip = ColorClip(size=(clip1.w, clip1.h), color=[1, 1, 1], duration=1) clip = concatenate_videoclips([colorclip, clip]) clips.append(clip) final_clip = concatenate_videoclips(clips) # Overlay the text clip on the first video clip final_clip.write_videofile(target, codec='libx264') file_path = "E:\\Systemordner\\Dokumente\\Pycharm\\Master\\sparse_body_pose_prediction\\moglow_dropout\\unity_motion_export\\UNTITYEXPORT\\" image_folder = "" numbers = [45, 720, 734, # bwd 338, 1148, 2112, # circle 650, 763, 2308, # diagonal 976, 1514, 2016, # fwd 12, 13, 772 # sideways ] methods = ["RNN2", "REF", "GLOW", "IK"] for number in numbers: file_names = [file_path + "WALKING_" + method + "_" + str(number) + "_trained_on_WALKING.mp4" for method in methods] out_file_path = "shuffled_videos\\" FileHelpers.create_folder(out_file_path) concatenate_animations([file_names[0],file_names[1],file_names[2],file_names[3]], image_folder, out_file_path + str(number) + "_A.mp4") concatenate_animations([file_names[3],file_names[2],file_names[1],file_names[0]], image_folder, out_file_path + str(number) + "_B.mp4") concatenate_animations([file_names[2],file_names[3],file_names[0],file_names[1]], image_folder, out_file_path + str(number) + "_C.mp4") concatenate_animations([file_names[1],file_names[0],file_names[3],file_names[2]], image_folder, out_file_path + str(number) + "_D.mp4")
from matplotlib.ticker import FuncFormatter import matplotlib.pyplot as plt import numpy as np from Helpers import FileHelpers, ModelWrappers from Helpers import DataPreprocessor from Helpers import StatsPrinter target_folder = "stats/" training_prep_folder = "E:/Master/Sorted Mocap/WALKING/" from sklearn.utils import shuffle FileHelpers.create_folder(target_folder) numbers = [ 45, 720, 734, # bwd 338, 1148, 2112, # circle 650, 763, 2308, # diagonal 976, 1514, 2016, # fwd 12, 13, 772 # sideways ] motiondict = { 45: "bwd",