예제 #1
0
def retrack_remap_rbfn():
	grip_dir = os.environ['GRIP_DATA']
	movie_fn,_ = QApp.app.loadFilename('Choose a movie to open', grip_dir, 'Movie Files (*.mp4 *.mov *.avi *.flv *.mpg)')
	txt_fn,_ = QApp.app.loadFilename('Choose a text file of frame indices to open', grip_dir, 'Text Files (*.txt)')
	md = MovieReader.open_file(movie_fn, audio=False)
	lines = map(str.strip,(open(txt_fn,'r').readlines()))
	mapping_file = {}
	for l in lines:
		pose_name,frame_number,group_names = l.split(':')
		for gn in group_names.split(','):
			mapping_file.setdefault(gn,{})[pose_name] = int(frame_number)
	print mapping_file.keys()
	print mapping_file
	update_rbfn(md, mapping_file=mapping_file)
예제 #2
0
def dirty_cb(dirty):
	if '/root/ui/attrs/movie_filename' in dirty:
		fn = State.getKey('/root/ui/attrs/movie_filename')
		global g_md
		g_md = MovieReader.open_file(fn)
		QApp.app.qtimeline.setRange(0,g_md['vmaxframe'])
	for dk in dirty:
		if dk.startswith('/root/ui/attrs/'):
			QApp.app.refresh()
	global g_mode, g_frame, g_rbfn
	if g_mode == 1 and not '/root/sliders/attrs' in dirty: # RBFN view; changing frame sets all the sliders; we avoid that case
		for key in dirty:
			if key.startswith('/root/sliders/attrs'):
				si = g_rbfn['slider_names'].index(key[len('/root/sliders/attrs/'):])
				group,gn,pn,slider_indices,slider_names,pose_splits = rbfn_info_from_frame(g_frame[g_mode])
				print 'rbfn slider value changed:',key,si,'from',group['slider_data'][pn][si],'to',State.getKey(key)
				group['slider_data'][pn][si] = State.getKey(key)
				rbfn_view_cb(g_frame[g_mode]) # TODO, force an update of the geo
예제 #3
0
def import_movie_frames():
    movie_fn, _ = QApp.app.loadFilename(
        'Choose a movie to open', cwd(),
        'Movie Files (*.mp4 *.mov *.avi *.flv *.mpg)')
    if movie_fn == '': return  # cancel
    set_cwd(movie_fn)
    txt_fn, _ = QApp.app.loadFilename(
        'Choose a text file of frame indices to open', cwd(),
        'Text Files (*.txt)')
    md = MovieReader.open_file(movie_fn, audio=False)
    images, shapes = [], []
    if txt_fn == '':
        frames = range(0, md['vmaxframe'], 100)
        #if txt_fn == '': frames = range(30000, 38300, 100)
    else:
        frames = [int(l.split(':')[1]) for l in open(txt_fn, 'r').readlines()]
    for fi in frames:
        print fi, '/', frames[-1]
        MovieReader.readFrame(md, fi)
        add_image(
            np.frombuffer(md['vbuffer'],
                          dtype=np.uint8).reshape(md['vheight'], md['vwidth'],
                                                  3).copy())
    State.push('Import movie frames')
예제 #4
0
def generateSkeleton(cacheId=622,
                     x3d_filename='',
                     perc=0.9,
                     triangleThreshold=1000,
                     thresholdDistance=25.,
                     useFrames=range(0, 514),
                     numComps=30,
                     labelGraphThreshold=4,
                     stepSize=1):

    directory = os.path.join(os.environ['GRIP_DATA'],
                             '140113_A2_GRIP_GenPeople')
    c3d_filename = 'ROM.c3d'
    cameraB = 7292, 34, (47, 2.3, -0.2), (67, 788, 79)
    cameraA = 5384, 49.8, (5.4, 1.1,
                           -0.7), (4, 1135, 0
                                   )  #5045,52,(5.6,0.9,-0.7),(0,1130,0)
    camera = cameraA
    startFrame = 0

    tempDir = os.environ['GRIP_TEMP']

    #import logging
    #logging.basicConfig(level=logging.DEBUG)
    from IO import C3D

    graph_out_fn = None

    # labelGraphThreshold = 4
    # stepSize = 1

    if True:  # bo data
        c = C3D.read(os.path.join(directory, c3d_filename))
        c3d_frames, c3d_fps = c['frames'], c['fps']
        pointLabels = c['labels']
        print 'c3d fps = ', c3d_fps
        numFramesVisiblePerPoint = np.sum(c3d_frames[:, :, 3] == 0, axis=0)
        numPointsVisiblePerFrame = np.sum(c3d_frames[:, :, 3] == 0, axis=1)
        print 'threshold', 0.40 * len(c3d_frames)
        goodPoints = np.where(
            numFramesVisiblePerPoint > 0.90 * len(c3d_frames))[0]
        goodFrames = np.where(
            np.sum(c3d_frames[:, goodPoints,
                              3] == 0, axis=1) == len(goodPoints))[0]
        print len(goodPoints), len(
            goodFrames)  # 290 x 6162 (80%), 283 x 8729 (90%), 275x10054 (96%)
        frames = c3d_frames[goodFrames, :, :][:, goodPoints, :][:, :, :3]
        pointLabels = [pointLabels[g] for g in goodPoints]
        #badPoint = pointLabels.index('BoDense:A_Neck_1')

        data_fn = 'W90-28-10.IO'
        skel_out_fn = None
        triangleThreshold = 1000.
    else:  # orn data
        # cacheId = 622
        # perc = 0.9
        # triangleThreshold = 1000.      # Bone threshold
        # thresholdDistance = 25.        # Joint threshold
        # useFrames = range(2370, 3500)
        # useFrames = range(2650, 3500)
        # useFrames = range(2600, 3480)
        # useFrames = range(2650, 3480)
        # useFrames = range(0, 2000)
        # useFrames = range(0, 514)
        #useFrames = [] #range(0, 1000)
        #useFrames.extend(range(2650, 3480))
        #useFrames.extend(range(4824, 5253))
        # numComps = 30

        # useFrames = range(0, 333)
        # useFrames = range(4824, 5253)

        print 'CacheId:', cacheId
        print 'Good point percentage:', perc
        print 'Triangle threshold:', triangleThreshold
        print 'Distance threshold:', thresholdDistance
        print 'Frames:', useFrames[0], '-', useFrames[-1]

        _, x3d_data = IO.load(x3d_filename)
        data_fn = 'W90-28-8.romtracks_T%d.IO' % cacheId
        location = '/root/tracks'
        # location = '/root/skeleton/reconstruction/collection/c3ds'
        c3d_frames = x3d_data[location]['x3ds']
        print c3d_frames.shape
        c3d_frames = np.transpose(c3d_frames, axes=(1, 0, 2))
        #frames = frames[:, blueIds, :]
        print c3d_frames.shape
        pointLabels = x3d_data[location]['x3ds_labels']

        if False:
            goodPoints = np.arange(c3d_frames.shape[1])
            goodFrames = np.arange(len(c3d_frames))
        else:
            numFramesVisiblePerPoint = np.sum(c3d_frames[useFrames, :, 3] == 0,
                                              axis=0)
            numPointsVisiblePerFrame = np.sum(c3d_frames[useFrames, :, 3] == 0,
                                              axis=1)
            goodPoints = np.where(
                numFramesVisiblePerPoint > perc * len(useFrames))[0]
            goodFrames = np.where(
                np.sum(c3d_frames[:, goodPoints,
                                  3] == 0, axis=1) == len(goodPoints))[0]

        print '# Good points: %d | # Good frames: %d' % (len(goodPoints),
                                                         len(goodFrames))
        print goodFrames[:4]
        frames = c3d_frames[goodFrames, :, :][:, goodPoints, :][:, :, :3]
        pointLabels = [int(pointLabels[g]) for g in goodPoints]

        skel_out_fn = None
        graph_out_fn = None

    data = frames[::stepSize, :, :].copy()
    first_time_only = not os.path.exists(os.path.join(tempDir, data_fn))
    if first_time_only:  # generate the file
        M = ASFReader.greedyTriangles(
            data,
            numComps,
            triangleThreshold=triangleThreshold,
            thresholdDistance=thresholdDistance**2)  # only every Nth frame
        IO.save(os.path.join(tempDir, 'M90_T%d.IO' % cacheId), M)
        _, M = IO.load(os.path.join(tempDir, 'M90_T%d.IO' % cacheId))
        stabilizedPointToGroup, stabilizedPointResiduals, stabilizedFrames = ASFReader.assignAndStabilize(
            data,
            M['RTs'][M['triIndices'][:28]],
            thresholdDistance=thresholdDistance**2)
        W = {
            'stabilizedPointToGroup': stabilizedPointToGroup,
            'stabilizedPointResiduals': stabilizedPointResiduals,
            'stabilizedFrames': stabilizedFrames
        }
        IO.save(os.path.join(tempDir, data_fn), W)
    else:
        _data = IO.load(os.path.join(tempDir, data_fn))[1]
        stabilizedPointToGroup = _data['stabilizedPointToGroup']
        stabilizedPointResiduals = _data['stabilizedPointResiduals']
        stabilizedFrames = _data['stabilizedFrames']

    print 'numFrames = %d' % len(stabilizedFrames)
    print 'number of labelled points %d' % np.sum(stabilizedPointToGroup != -1)
    print 'RMS of labelled points %fmm' % np.sqrt(
        np.mean(
            stabilizedPointResiduals[np.where(stabilizedPointToGroup != -1)]))
    first_time_only = True
    print stabilizedPointToGroup
    num_groups = max(stabilizedPointToGroup) + 1
    stabilized_groups = [
        np.where(stabilizedPointToGroup == gi)[0] for gi in range(num_groups)
    ]
    if first_time_only:
        if True:  # tighten the fit
            # thresh = [10,10,9,9] #,10,10,9,7,9,9,6,9,9,9,]
            thresh = [
                thresholdDistance, thresholdDistance, thresholdDistance - 1,
                thresholdDistance - 1, thresholdDistance - 2,
                thresholdDistance - 2
            ]
            # thresh = [20, 20, 19, 19, 10, 10, 9, 9]
            for t in thresh:
                #stabilizedPointToGroup[badPoint] = -1 # unlabel
                RTs = ASFReader.stabilizeAssignment(data,
                                                    stabilizedPointToGroup)
                stabilizedPointToGroup, stabilizedPointResiduals, stabilizedFrames = ASFReader.assignAndStabilize(
                    data, RTs, thresholdDistance=float(t)**2)
                print 'number of labelled points %d' % np.sum(
                    stabilizedPointToGroup != -1)
                print 'RMS of labelled points %fmm' % np.sqrt(
                    np.mean(stabilizedPointResiduals[np.where(
                        stabilizedPointToGroup != -1)]))
        else:
            RTs = ASFReader.stabilizeAssignment(data, stabilizedPointToGroup)
            stabilizedPointToGroup, stabilizedPointResiduals, stabilizedFrames = ASFReader.assignAndStabilize(
                data, RTs, thresholdDistance=10.**2)

        global animJoints, stablePointsGroups, displayFrames, groupRepresentatives
        stablePointsData = ASFReader.sharedStablePoints(RTs, threshold=3.**2)
        stablePointsGroups = [sp[0] for sp in stablePointsData]
        stablePoints = np.array([sp[2] for sp in stablePointsData],
                                dtype=np.float32)
        print 'num stable points', len(stablePoints)

    def residual(gi, leaf_indices, RTs):
        '''given a group and a list of attachment points, choose the best attachment point and return the residual.'''
        tmp = [(ASFReader.transform_pair_residual(RTs[gi], RTs[gj]), gj)
               for gj in leaf_indices]
        return min(tmp)

    # make a skeleton from stabilizedPointToGroup
    root_group = 0
    leaf_nodes = set([root_group])
    skel_group_indices = [root_group]
    skel_joint_parents = [-1]
    groups = set(range(stabilizedPointToGroup.max() + 1))
    groups.remove(root_group)
    RTs = ASFReader.stabilizeAssignment(data, stabilizedPointToGroup)
    joints = []
    joints.append(np.mean(data[0, stabilized_groups[root_group]], axis=0))
    bones = []
    bones.append([])
    G = np.eye(3, 4, dtype=np.float32)
    G[:, 3] = np.mean(data[0, stabilized_groups[root_group]], axis=0)
    Gs = [G]
    while groups:
        residuals = [(residual(gi, leaf_nodes, RTs), gi) for gi in groups]
        (((res, O), parent), group) = min(residuals)
        groups.remove(group)
        leaf_nodes.add(group)
        skel_group_indices.append(group)
        pi = skel_group_indices.index(parent)
        skel_joint_parents.append(pi)
        joint_world = np.float32(O)
        joints.append(joint_world)
        bones.append([np.mean(data[0, stabilized_groups[group]], axis=0) - O])
        bones[pi].append(joint_world - joints[pi])
        print group, parent
        G = np.eye(3, 4, dtype=np.float32)
        G[:, 3] = O
        Gs.append(G)
    print skel_group_indices
    print skel_joint_parents

    numJoints = len(skel_joint_parents)
    jointNames = map(str, skel_group_indices)
    jointIndex = dict(zip(jointNames, range(len(jointNames))))
    jointParents = skel_joint_parents
    jointChans = [0, 1, 2] + [3, 4, 5] * numJoints
    jointChanSplits = [0, 3, 6]
    for x in range(numJoints - 1):
        jointChanSplits.append(jointChanSplits[-1])
        jointChanSplits.append(jointChanSplits[-1] + 3)
    dofNames = [
        jointNames[ji] +
        [':tx', ':ty', ':tz', ':rx', ':ry', ':rz'][jointChans[di]]
        for ji in range(numJoints)
        for di in range(jointChanSplits[2 * ji], jointChanSplits[2 * ji + 2])
    ]
    numDofs = len(dofNames)

    def mult_inv(Gs_pi, Gs_gi):
        # Gs_pi^-1 Gs_gi = Ls_gi
        R = np.linalg.inv(Gs_pi[:3, :3])
        ret = np.dot(R, Gs_gi)
        ret[:, 3] -= np.dot(R, Gs_pi[:, 3])
        return ret

    Ls = np.float32([
        mult_inv(Gs[pi], Gs[gi]) if pi != -1 else Gs[gi]
        for gi, pi in enumerate(skel_joint_parents)
    ])
    Bs = bones

    print map(len, Bs)

    markerParents = [
        skel_group_indices.index(gi) for gi in stabilizedPointToGroup
        if gi != -1
    ]
    markerNames = [('%d' % pi) for pi, gi in enumerate(stabilizedPointToGroup)
                   if gi != -1]
    labelNames = [('%d' % pointLabels[pi])
                  for pi, gi in enumerate(stabilizedPointToGroup) if gi != -1]
    markerOffsets = [
        np.dot(Gs[skel_group_indices.index(gi)][:3, :3].T,
               data[0][pi] - Gs[skel_group_indices.index(gi)][:3, 3])
        for pi, gi in enumerate(stabilizedPointToGroup) if gi != -1
    ]

    skel_dict = {
        'name': 'skeleton',
        'numJoints': int(numJoints),
        'jointNames': jointNames,  # list of strings
        'jointIndex': jointIndex,  # dict of string:int
        'jointParents': np.int32(jointParents),
        'jointChans': np.int32(jointChans),  # 0 to 5 : tx,ty,tz,rx,ry,rz
        'jointChanSplits': np.int32(jointChanSplits),
        'chanNames': dofNames,  # list of strings
        'chanValues': np.zeros(numDofs, dtype=np.float32),
        'numChans': int(numDofs),
        'Bs': Bs,
        'Ls': np.float32(Ls),
        'Gs': np.float32(Gs),
        'markerParents': np.int32(markerParents),
        'markerNames': markerNames,
        'markerOffsets': np.float32(markerOffsets),
        'markerWeights': np.ones(len(markerNames), dtype=np.float32),
        'rootMat': np.eye(3, 4, dtype=np.float32),
        'labelNames': labelNames
    }

    if graph_out_fn is not None and labelGraphThreshold != -1:
        print 'Generating labelling graph...'
        from GCore import Label as GLabel
        c3d_data = c3d_frames[goodFrames, :, :][:, goodPoints, :][:, :, :]
        c3d_data = c3d_data[::stepSize, :, :]
        # graph = GLabel.graph_from_c3ds(skel_dict, markerNames, c3d_data, threshold=3)
        graph = GLabel.graph_from_c3ds(skel_dict,
                                       markerNames,
                                       c3d_data,
                                       threshold=labelGraphThreshold)
        IO.save(graph_out_fn, {'/root/graph': {'label_graph': graph}})
        print 'Labelling graph saved to:', graph_out_fn

    if skel_out_fn is not None: IO.save(skel_out_fn, skel_dict)

    def test_skeleton(sd):
        '''TODO, write some code to verify that a dict actually is a skeleton.'''
        assert isinstance(sd['name'], str), 'name key should be a string'
        numJoints = sd['numJoints']
        assert isinstance(numJoints, int), 'numJoints key should be an int'

    animJoints = None
    showStabilized = False
    if showStabilized:
        displayFrames = stabilizedFrames
        pointToGroup = stabilizedPointToGroup
    else:  # show animated
        displayFrames = frames  #c3d_frames[:,:,:3]
        displayLabels = pointLabels
        if first_time_only:  # generate the file
            framesRTs = ASFReader.stabilizeAssignment(displayFrames,
                                                      stabilizedPointToGroup)
            IO.save(
                os.path.join(tempDir, 'tmp90-28.IO'), {
                    'framesRTs': framesRTs,
                    'stabilizedPointToGroup': stabilizedPointToGroup,
                    'stablePoints': stablePoints,
                    'stablePointsGroups': stablePointsGroups
                })
        for k, v in IO.load(os.path.join(tempDir,
                                         'tmp90-28.IO'))[1].iteritems():
            locals()[k] = v
        animJoints = ASFReader.unstabilize(stablePoints,
                                           framesRTs[stablePointsGroups])
        print 'animJoints shape', animJoints.shape
        pointToGroup = -np.ones(displayFrames.shape[1], dtype=np.int32)
        print goodPoints.shape, pointToGroup.shape, stabilizedPointToGroup.shape
        pointToGroup = stabilizedPointToGroup
        #pointToGroup[goodPoints] = stabilizedPointToGroup # for displayFrames = c3d_frames[:,:,:3]
    groupRepresentatives = ASFReader.groupRepresentatives(
        data, stabilizedPointToGroup)
    numJoints = len(stablePoints)
    boneEdges = np.array(range(2 * numJoints), dtype=np.int32)
    boneVertices = np.zeros((numJoints * 2, 3), dtype=np.float32)
    boneVertices[::2] = stablePoints
    boneVertices[1::2] = displayFrames[
        0, groupRepresentatives[stablePointsGroups]]

    #import cv2
    #movie = cv2.VideoCapture(directory+movieFilename)
    #frameOk, frameData = movie.read()
    #global md
    #md = {'buffer':frameData, 'height':frameData.shape[0], 'width':frameData.shape[1]}

    global app, win, view, frame, points, joints, bones
    app = QtGui.QApplication(sys.argv)
    app.setStyle('plastique')
    win = QtGui.QMainWindow()
    win.setFocusPolicy(QtCore.Qt.StrongFocus)  # get keyboard events
    win.setWindowTitle('Imaginarium Skeleton Reconstruction Test %d' % cacheId)
    panel = GViewer.QGLPanel()
    view = panel.view
    view.setMinimumWidth(640)
    view.setMinimumHeight(480)
    win.setCentralWidget(panel)
    timelineDock = QtGui.QDockWidget('Timeline')
    timeline = UI.QTimeline(win)
    timeline.cb = setFrame
    timeline.setRange(0, goodFrames[-1])
    timelineDock.setWidget(timeline)
    timelineDock.setFeatures(QtGui.QDockWidget.DockWidgetMovable
                             | QtGui.QDockWidget.DockWidgetFloatable)

    frame = startFrame
    view.addCamera(UI.QGLViewer.Camera('default'))
    grid = GLGrid()
    view.primitives.append(grid)

    points = GLPoints3D(displayFrames[frame])
    from colorsys import hsv_to_rgb
    colorTable = np.array([
        hsv_to_rgb((h * 0.618033988749895) % 1, 0.5, 0.95)
        for h in xrange(max(pointToGroup) + 2)
    ],
                          dtype=np.float32)
    colorTable[-1] = 0
    points.colours = colorTable[pointToGroup]
    #points.names = displayLabels
    #points.pointSize = 3
    view.primitives.append(points)
    joints = GLPoints3D(stablePoints)
    joints.names = map(str, xrange(len(stablePoints)))
    view.primitives.append(joints)
    bones = GLBones(boneVertices, boneEdges)
    view.primitives.append(bones)
    win.addDockWidget(QtCore.Qt.BottomDockWidgetArea, timelineDock)
    win.show()

    global md, img, g_detectingDots, g_readingMovie
    md, img, g_detectingDots = None, None, False
    g_readingMovie = False
    if g_readingMovie:
        md = MovieReader.open_file(os.path.join(directory, movieFilename))
        img = np.frombuffer(md['vbuffer'],
                            dtype=np.uint8).reshape(md['vheight'],
                                                    md['vwidth'], 3)
        view.setImageData(md['vbuffer'], md['vheight'], md['vwidth'], 3)

    global allSkels
    allSkels = []

    app.connect(app, QtCore.SIGNAL('lastWindowClosed()'), app.quit)
    sys.exit(app.exec_())
예제 #5
0
def import_movie_cb():
	grip_dir = os.environ['GRIP_DATA']
	movie_fn, _ = QApp.app.loadFilename('Choose a movie to open', grip_dir, 'Movie Files (*.mp4 *.mov *.avi *.flv *.mpg)')
	global md
	md = MovieReader.open_file(movie_fn)
예제 #6
0
def main():
    global State, mats, movieFilenames, primitives
    global movies, primitives2D, deinterlacing, detectingWands
    import IO
    import sys, os
    deinterlacing = False
    detectingWands = False
    detectingTiara = False
    dot_detections = None
    detections_filename = None
    frame_offsets = None
    firstFrame, lastFrame = 0, 5000
    drawDotSize = 4.0
    fovX, (ox,
           oy), pan_tilt_roll, tx_ty_tz, distortion = 50., (0,
                                                            0), (0, 0,
                                                                 0), (0, 1250,
                                                                      0), (0,
                                                                           0)
    mats = []
    grip_directory = os.environ['GRIP_DATA']

    if 0:
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 37.9, (0, 0), (
            -66.0, 3.5, -0.2), (4850, 1330, 3280), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat0 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 55.8, (0, 0), (
            -103.6, 3.5, -0.3), (2980, 1380, -2180), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat1 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 49.3, (0, 0), (
            27.9, 4.0, -0.2), (-5340, 1150, 5030), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat2 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        fovX, (ox, oy), pan_tilt_roll, tx_ty_tz, distortion = 50.6, (0, 0), (
            -156.6, 4.9, 0.2), (-105, 1400, -4430), (0, 0)  # roughed in
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mat3 = [
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]
        mats = [mat0, mat1, mat2, mat3]
        xcp_filename = '154535_Cal168_Floor_Final.xcp'
        directory = os.path.join(grip_directory, 'REFRAME')
        movieFilenames = [
            '001E0827_01.MP4', '001F0813_01.MP4', '001G0922_01.MP4',
            '001H0191_01.MP4'
        ]
        #mats,movieFilenames = mats[:1],movieFilenames[:1] # restrict to single-view
        frame_offsets = [119 + 160, 260, 339, 161]
        small_blur, large_blur = 1, 25
        min_dot_size = 1.0
        max_dot_size = 20.0
        circularity_threshold = 3.0
        threshold_bright, threshold_dark_inv = 250, 250  #135,135
    elif 0:
        xcp_filename = '201401211653-4Pico-32_Quad_Dialogue_01_Col_wip_01.xcp'
        detections_filename = 'detections.dat'
        detectingTiara = True
        pan_tilt_roll = (0, 0, 90)
        distortion = (0.291979, 0.228389)
        directory = os.path.join(os.environ['GRIP_DATA'], 'ted')
        movieFilenames = [
            '201401211653-4Pico-32_Quad_Dialogue_01_%d.mpg' % xi
            for xi in range(1)
        ]
        firstFrame = 511
        small_blur, large_blur = 1, 20
        min_dot_size = 1.0
        max_dot_size = 16.0
        circularity_threshold = 3.0
        threshold_bright, threshold_dark_inv = 0, 170
    elif 1:
        xcp_filename = '50_Grip_RoomCont_AA_02.xcp'
        detections_filename = 'detections.dat'
        pan_tilt_roll = (0, 0, 0)
        distortion = (0.291979, 0.228389)
        directory = os.path.join(os.environ['GRIP_DATA'], '151110')
        movieFilenames = ['50_Grip_RoomCont_AA_02.v2.mov']
        firstFrame = 0
        small_blur, large_blur = 1, 20
        min_dot_size = 1.0
        max_dot_size = 16.0
        circularity_threshold = 3.0
        threshold_bright, threshold_dark_inv = 170, 170

    attrs = dict([(v, eval(v)) for v in [
        'small_blur', 'large_blur', 'threshold_bright', 'threshold_dark_inv',
        'circularity_threshold', 'min_dot_size', 'max_dot_size'
    ]])

    primitives2D = QGLViewer.makePrimitives2D(([], []), ([], []))
    primitives = []
    if len(movieFilenames) is 1:
        # TODO: time_base, timecode
        K, RT = Calibrate.composeK(fovX, ox, oy), Calibrate.composeRT(
            Calibrate.composeR(pan_tilt_roll), tx_ty_tz, 0)
        mats = [[
            K[:3, :3], RT[:3, :4],
            np.dot(K, RT)[:3, :], distortion, -np.dot(RT[:3, :3].T, RT[:3, 3]),
            [1920, 1080]
        ]]
        camera_ids = ['video']
        movies = [
            MovieReader.open_file(os.path.join(directory, movieFilenames[0]),
                                  audio=False)
        ]
    else:  # hard coded cameras
        if xcp_filename.endswith('.xcp'):
            if detectingTiara:  # gruffalo
                c3d_filename = os.path.join(
                    directory,
                    '201401211653-4Pico-32_Quad_Dialogue_01_Col_wip_02.c3d')
                from IO import C3D
                c3d_dict = C3D.read(c3d_filename)
                global c3d_frames
                c3d_frames, c3d_fps, c3d_labels = c3d_dict['frames'], c3d_dict[
                    'fps'], c3d_dict['labels']
                c3d_subject = ''  #'TedFace'
                which = np.where(
                    [s.startswith(c3d_subject) for s in c3d_labels])[0]
                c3d_frames = c3d_frames[:, which, :]
                c3d_labels = [c3d_labels[i] for i in which]
                print len(c3d_frames)
            xcp, xcp_data = ViconReader.loadXCP(
                os.path.join(directory, xcp_filename))
            mats.extend(xcp)
        elif xcp_filename.endswith('.cal'):
            from IO import OptitrackReader
            xcp, xcp_data = OptitrackReader.load_CAL(
                os.path.join(directory, xcp_filename))
            mats = xcp
            print 'mats', len(mats), len(movieFilenames)
            assert (len(mats) == len(movieFilenames))
        camera_ids = []
        movies = []
        for ci, mf in enumerate(movieFilenames):
            fo = 0 if frame_offsets is None else frame_offsets[ci]
            movies.append(
                MovieReader.open_file(os.path.join(directory, mf),
                                      audio=False,
                                      frame_offset=fo))
        camera_ids = ['cam_%d' % ci for ci in xrange(len(mats))]
        print len(mats), len(movies), len(camera_ids)
    primitives.append(GLPoints3D([]))
    primitives.append(GLPoints3D([]))
    primitives.append(GLPoints3D([]))
    primitives[0].colour = (0, 1, 1, 0.5)  # back-projected "cyan" points
    primitives[1].colour = (0, 0, 1, 0.5)
    primitives[1].pointSize = 5
    primitives[2].colour = (1, 0, 0, 0.99)

    if len(movieFilenames) != 1 and detections_filename != None:
        try:
            dot_detections = IO.load(detections_filename)[1]
        except:
            numFrames = len(c3d_frames)  # TODO HACK HACK
            dot_detections = movies_to_detections(movies, range(numFrames),
                                                  deinterlacing, attrs)
            IO.save(detections_filename, dot_detections)

        if detectingTiara:
            x3ds_seq = {}
            for fi in dot_detections.keys():
                frame = c3d_frames[(fi - 55) % len(c3d_frames)]
                which = np.array(np.where(frame[:, 3] == 0)[0], dtype=np.int32)
                x3ds_seq[fi] = np.concatenate((VICON_tiara_x3ds + np.array([150,-100,0],dtype=np.float32),frame[which,:3])), \
                      np.concatenate((np.arange(len(VICON_tiara_x3ds),dtype=np.int32),which+len(VICON_tiara_x3ds)))

            dot_labels = get_labels(dot_detections.keys(),
                                    x3ds_seq,
                                    dot_detections,
                                    mats,
                                    x2d_threshold=0.05)

            calibration_fi = 546 - 2 - 6

            RT = tighten_calibration(x3ds_seq[calibration_fi],
                                     dot_labels[calibration_fi], mats)
            for v in c3d_frames:
                v[:, :3] = np.dot(v[:, :3], RT[:3, :3].T) + RT[:, 3]

            if True:
                dot_detections = IO.load(detections_filename)[1]
                x3ds_seq = {}
                for fi in dot_detections.keys():
                    frame = c3d_frames[(fi - 55) % len(c3d_frames)]
                    which = np.array(np.where(frame[:, 3] == 0)[0],
                                     dtype=np.int32)
                    x3ds_seq[fi] = np.concatenate((VICON_tiara_x3ds + np.array([0,1000,0],dtype=np.float32),frame[which,:3])), \
                          np.concatenate((np.arange(len(VICON_tiara_x3ds),dtype=np.int32),which+len(VICON_tiara_x3ds)))

                #dot_labels = get_labels(dot_detections.keys(), x3ds_seq, dot_detections, mats, x2d_threshold = 0.05)

    if detectingTiara:
        primitives.append(GLPoints3D(VICON_tiara_x3ds + [0, 1000, 0]))
        primitives[-1].pointSize = 5

    global track3d, prev_frame, booting, trackGraph
    track3d = Label.Track3D(mats[:len(movies)],
                            x2d_threshold=0.03,
                            x3d_threshold=5.0,
                            min_rays=3,
                            boot_interval=2)  #tilt_threshold = 0.01, gruffalo
    trackGraph = Label.TrackGraph()
    prev_frame = 0
    booting = 1

    from UI import QApp
    from PySide import QtGui
    from GCore import State
    # Modified the options parameter for fields to be the range of acceptable values for the box
    # Previously would crash if small_blur got too low
    QApp.fields = {
        'image filter': [
            ('small_blur', 'Small blur radius',
             'This is part of the image filter which controls the size of smallest detected features.',
             'int', small_blur, {
                 "min": 0,
                 "max": None
             }),
            ('large_blur', 'Large blur radius',
             'This is part of the image filter which controls the size of largest detected features.',
             'int', large_blur, {
                 "min": 0,
                 "max": None
             }),
            ('threshold_bright', 'threshold_bright',
             'This is part of the image filter which controls the size of smallest detected features.',
             'int', threshold_bright, {
                 "min": 0,
                 "max": 255
             }),
            ('threshold_dark_inv', 'threshold_dark_inv',
             'This is part of the image filter which controls the size of largest detected features.',
             'int', threshold_dark_inv, {
                 "min": 0,
                 "max": 255
             }),
            ('circularity_threshold', 'circularity_threshold',
             'How circular?.', 'float', circularity_threshold, {
                 "min": 0,
                 "max": 100
             }),
            ('min_dot_size', 'min_dot_size',
             'min_dot_size smallest detected features.', 'float', min_dot_size,
             {
                 "min": 0,
                 "max": 100
             }),
            ('max_dot_size', 'max_dot_size',
             'max_dot_size largest detected features.', 'float', max_dot_size,
             {
                 "min": 0,
                 "max": 100
             }),
        ]
    }
    State.addKey('dotParams', {'type': 'image filter', 'attrs': attrs})
    State.setSel('dotParams')
    appIn = QtGui.QApplication(sys.argv)
    appIn.setStyle('plastique')
    win = QApp.QApp()
    win.setWindowTitle('Imaginarium Dots Viewer')
    QGLViewer.makeViewer(primitives=primitives,
                         primitives2D=primitives2D,
                         timeRange=(firstFrame, lastFrame),
                         callback=setFrame,
                         mats=mats,
                         camera_ids=camera_ids,
                         movies=movies,
                         pickCallback=picked,
                         appIn=appIn,
                         win=win)
예제 #7
0
def main(x2d_filename, xcp_filename, c3d_filename=None):
    '''Generate a 3D view of an x2d file, using the calibration.'''
    global x2d_frames, mats, Ps, c3d_frames, primitives, primitives2D, track3d, prev_frame, track_orn, orn_graph, boot, orn_mapper, mar_mapper
    prev_frame = None
    c3d_frames = None
    if c3d_filename != None:
        c3d_dict = C3D.read(c3d_filename)
        c3d_frames, c3d_fps, c3d_labels = c3d_dict['frames'], c3d_dict[
            'fps'], c3d_dict['labels']
    mats, xcp_data = ViconReader.loadXCP(xcp_filename)
    camera_ids = [int(x['DEVICEID']) for x in xcp_data]
    print 'loading 2d'
    x2d_dict = ViconReader.loadX2D(x2d_filename)
    x2d_frames = x2d_dict['frames']
    cameras_info = ViconReader.extractCameraInfo(x2d_dict)
    print 'num frames', len(x2d_frames)
    Ps = [m[2] / (m[0][0, 0]) for m in mats]
    track3d = Label.Track3D(mats)

    primitives = QGLViewer.makePrimitives(vertices=[], altVertices=[])
    primitives2D = QGLViewer.makePrimitives2D(([], [0]))

    global g_all_skels, md
    directory = os.path.join(os.environ['GRIP_DATA'], '151110')
    _, orn_skel_dict = IO.load(os.path.join(directory, 'orn.skel'))
    movie_fn = os.path.join(directory, '50_Grip_RoomCont_AA_02.v2.mov')
    md = MovieReader.open_file(movie_fn,
                               audio=True,
                               frame_offset=0,
                               volume_ups=10)

    asf_filename = os.path.join(directory, 'Martha.asf')
    amc_filename = os.path.join(directory, 'Martha.amc')
    asf_dict = ASFReader.read_ASF(asf_filename)
    mar_skel_dict = ASFReader.asfDict_to_skelDict(asf_dict)
    mar_skel_dict['anim_dict'] = ASFReader.read_AMC(amc_filename, asf_dict)
    for k in ('geom_Vs', 'geom_vsplits', 'geom_Gs'):
        mar_skel_dict[k] = orn_skel_dict[k].copy()
    mar_skel_dict['shape_weights'] = orn_skel_dict['shape_weights']
    mar_skel_dict['geom_dict'] = orn_skel_dict['geom_dict']

    orn_vss = ViconReader.loadVSS(os.path.join(directory, 'Orn.vss'))
    orn_vss_chan_mapping = [
        orn_vss['chanNames'].index(n) for n in orn_skel_dict['chanNames']
    ]
    orn_anim_dict = orn_skel_dict['anim_dict']
    orn_vss_anim = np.zeros(
        (orn_anim_dict['dofData'].shape[0], orn_vss['numChans']),
        dtype=np.float32)
    orn_vss_anim[:, orn_vss_chan_mapping] = orn_anim_dict['dofData']
    orn_anim_dict['dofData'] = orn_vss_anim
    orn_vss['anim_dict'] = orn_anim_dict
    for x in [
            'geom_dict', 'geom_Vs', 'geom_vsplits', 'geom_Gs', 'shape_weights'
    ]:
        orn_vss[x] = orn_skel_dict[x]
    orn_skel_dict = orn_vss

    g_all_skels = {}
    orn_mesh_dict, orn_skel_mesh, orn_geom_mesh = orn_t = Character.make_geos(
        orn_skel_dict)
    g_all_skels['orn'] = (orn_skel_dict, orn_t)
    orn_skel_dict['chanValues'][:] = 0
    Character.updatePoseAndMeshes(orn_skel_dict, orn_skel_mesh, orn_geom_mesh)

    mar_mesh_dict, mar_skel_mesh, mar_geom_mesh = mar_t = Character.make_geos(
        mar_skel_dict)
    g_all_skels['mar'] = (mar_skel_dict, mar_t)

    #ted_mesh_dict, ted_skel_mesh, ted_geom_mesh = ted_t = Character.make_geos(ted_skel_dict)
    #g_all_skels['ted'] = (ted_skel_dict, ted_t)
    #ted_skel_dict['chanValues'][0] += 1000
    #Character.updatePoseAndMeshes(ted_skel_dict, ted_skel_mesh, ted_geom_mesh)

    mnu = orn_skel_dict['markerNamesUnq']
    mns = orn_skel_dict['markerNames']
    effectorLabels = np.array([mnu.index(n) for n in mns], dtype=np.int32)
    orn_graph = Label.graph_from_skel(orn_skel_dict, mnu)
    boot = -10

    track_orn = Label.TrackModel(orn_skel_dict, effectorLabels, mats)

    #ted = GLSkel(ted_skel_dict['Bs'], ted_skel_dict['Gs']) #, mvs=ted_skel_dict['markerOffsets'], mvis=ted_skel_dict['markerParents'])
    #ted = GLSkeleton(ted_skel_dict['jointNames'],ted_skel_dict['jointParents'], ted_skel_dict['Gs'][:,:,3])
    #ted.setName('ted')
    #ted.color = (1,1,0)
    #orn = GLSkeleton(orn_skel_dict['jointNames'],orn_skel_dict['jointParents'], orn_skel_dict['Gs'][:,:,3])
    #orn.setName('orn')
    #orn.color = (0,1,1)

    #square = GLMeshes(names=['square'],verts=[[[0,0,0],[1000,0,0],[1000,1000,0],[0,1000,0]]],vts=[[[0,0],[1,0],[1,1],[0,1]]],faces=[[[0,1,2,3]]],fts=[[[0,1,2,3]]])
    #square.setImageData(np.array([[[0,0,0],[255,255,255]],[[255,255,255],[0,0,0]]],dtype=np.uint8))
    #orn_geom_mesh.setImageData(np.array([[[0,0,0],[255,255,255]],[[255,255,255],[0,0,0]]],dtype=np.uint8))

    P = Calibrate.composeP_fromData((60.8, ), (-51.4, 14.7, 3.2),
                                    (6880, 2860, 5000),
                                    0)  # roughed in camera for 151110
    ks = (0.06, 0.0)
    mat = Calibrate.makeMat(P, ks, (1080, 1920))
    orn_mapper = Opengl.ProjectionMapper(mat)
    orn_mapper.setGLMeshes(orn_geom_mesh)
    orn_geom_mesh.setImage((md['vbuffer'], (md['vheight'], md['vwidth'], 3)))

    mar_mapper = Opengl.ProjectionMapper(mat)
    mar_mapper.setGLMeshes(mar_geom_mesh)
    mar_geom_mesh.setImage((md['vbuffer'], (md['vheight'], md['vwidth'], 3)))

    global g_screen
    g_screen = Opengl.make_quad_distortion_mesh()

    QGLViewer.makeViewer(mat=mat,md=md,layers = {\
		#'ted':ted, 'orn':orn,
		#'ted_skel':ted_skel_mesh,'ted_geom':ted_geom_mesh,\
		#'square':square,



     'orn_skel':orn_skel_mesh,'orn_geom':orn_geom_mesh,\
     'mar_skel':mar_skel_mesh,'mar_geom':mar_geom_mesh,\
      },
    primitives=primitives, primitives2D=primitives2D, timeRange=(0, len(x2d_frames) - 1, 4, 25.0), callback=intersectRaysCB, mats=mats,camera_ids=camera_ids)
예제 #8
0
def retrack_refresh_rbfn():
	grip_dir = os.environ['GRIP_DATA']
	movie_fn,_ = QApp.app.loadFilename('Choose a movie to open', grip_dir, 'Movie Files (*.mp4 *.mov *.avi *.flv *.mpg)')
	md = MovieReader.open_file(movie_fn, audio=False)
	update_rbfn(md)
예제 #9
0
파일: Face.py 프로젝트: davidsoncolin/IMS
            print 'generating ted skel and anim'
            ASFReader.convertASFAMC_to_SKELANIM(asf_filename, amc_filename,
                                                skelFilename, animFilename)
            ted_skel = IO.load(skelFilename)[1]
            ted_anim = IO.load(animFilename)[1]
        ted_xcp_mats, ted_xcp_data = ViconReader.loadXCP(xcp_filename)

    if True:  # facial animation

        global ted_geom, ted_geom2, ted_shape, tony_geom, tony_shape, tony_geom2, tony_obj, ted_obj, diff_geom, c3d_frames
        global tony_shape_vector, tony_shape_mat, ted_lo_rest, ted_lo_mat, c3d_points
        global md, movies

        ted_dir = os.path.join(os.environ['GRIP_DATA'], 'ted')
        wavFilename = os.path.join(ted_dir, '32T01.WAV')
        md = MovieReader.open_file(wavFilename)
        c3d_filename = os.path.join(
            ted_dir, '201401211653-4Pico-32_Quad_Dialogue_01_Col_wip_02.c3d')
        c3d_dict = C3D.read(c3d_filename)
        c3d_frames, c3d_fps, c3d_labels = c3d_dict['frames'], c3d_dict[
            'fps'], c3d_dict['labels']
        if False:  # only for cleaned-up data
            c3d_subject = 'TedFace'
            which = np.where([s.startswith(c3d_subject)
                              for s in c3d_labels])[0]
            c3d_frames = c3d_frames[:, which, :]
            c3d_labels = [c3d_labels[i] for i in which]
            print c3d_labels
        if False:  # this is for the cleaned-up data (don't apply the other offset...)
            offset = Calibrate.composeRT(Calibrate.composeR((0.0, 0.0, 0)),
                                         (0, 0, -8), 0)  # 0.902
예제 #10
0
    def initialise(self, interface, attrs):
        directory = self.resolvePath(attrs['directory'])
        if not directory: return False

        prefix = attrs['prefix']
        prefixFilename = self.resolvePath(attrs['prefixFilename'])
        if prefix and not prefixFilename: return

        calibration = attrs['calibration']
        calibrationFilename = self.resolvePath(attrs['calibrationFilename'])
        calibrationLocation = self.resolvePath(attrs['calibrationLocation'])
        if calibration and (not calibrationFilename
                            and not calibrationLocation):
            return False

        movieFilenames = []
        try:
            for file in os.listdir(directory):
                if prefixFilename and not file.startswith(prefixFilename):
                    continue
                if file.endswith('.avi') or file.endswith(
                        '.mov') or file.endswith('mp4'):
                    movieFilenames.append(os.path.join(directory, file))
        except WindowsError as e:
            self.logger.error('Could not find videos: % s' % str(e))

        if not movieFilenames:
            # TODO: Here we'll have to clear the cameras etc.
            return False

        # Windows will produce a wonky order, i.e. 1, 10, 11, .., 2, 3, ..
        # Use natural sorting to rectify
        movieFilenames.sort(key=self.alphaNumKey)

        self.camera_ids = []
        self.camera_names = []
        self.movies = []
        self.mats = []
        vheights = []
        vwidths = []
        timecodes = []
        hasTimecode = False
        useTimecode = attrs['useTimecode'] if 'useTimecode' in attrs else True

        offset = attrs['offset']
        if 'offsets' in attrs and attrs['offsets']:
            offsets = eval(attrs['offsets'])
        else:
            offsets = [offset] * len(movieFilenames)

        for ci, mf in enumerate(movieFilenames):
            self.logger.info('Loading MovieReader: %s' % mf)
            movieData = MovieReader.open_file(mf,
                                              audio=False,
                                              frame_offset=offsets[ci])

            if movieData['vbuffer'] is not None:
                self.movies.append(movieData)

                self.timecodeOffsets.append(0)
                if 'timecode' in movieData and movieData['timecode']:
                    hasTimecode = True
                    timecodes.append(movieData['timecode'])

        # Make sure we have all the cameras before continuing
        if len(self.movies) != len(movieFilenames):
            self.logger.error('Could not load all movies in sequence')
            return

        # Make sure we have as many time codes as movies (if we have any)
        if hasTimecode and len(self.movies) != len(timecodes):
            self.logger.error('Not all movie files have a time code')
            return

        # See if we can get the offsets using the time codes
        if hasTimecode and useTimecode:
            print 'Video timecodes:', timecodes
            fps_all = [round(m['fps']) for m in self.movies]
            print 'FPS:', fps_all
            timecodeValues = [
                Timecode.TCFtoInt(tc, fps)
                for tc, fps in zip(timecodes, fps_all)
            ]
            tcOrderDesc = [
                timecodes.index(tc) for tc in sorted(timecodes, reverse=True)
            ]

            # Set the first offset to 0
            firstTcIndex = tcOrderDesc[0]
            self.timecodeOffsets[firstTcIndex] = 0
            largestTc = timecodes[firstTcIndex]
            offsetStartIndex = 1

            # We can also get the timecode destination from an incoming location, e.g. 2D detections
            if 'timecodeLocation' in attrs and attrs['timecodeLocation']:
                tcSyncTime = interface.attr(
                    'timecode', atLocation=attrs['timecodeLocation'])
                if tcSyncTime is not None:
                    tcSyncValue = Timecode.TCFtoInt(tcSyncTime, fps_all[0])
                    if tcSyncValue < timecodeValues[firstTcIndex]:
                        self.logger.error(
                            'Sync timecode %s is smaller than video timecodes (%s).'
                            % (tcSyncTime, largestTc))
                        return

                    largestTc = tcSyncTime
                    offsetStartIndex = 0

            self.timecode = largestTc
            self.logger.info('Setting timecode to: %s' % (largestTc))

            # Calculate the offset for each camera to get it up to speed with the target timecode
            # TODO: Replace hard coded timecode fps and multiplier
            timecodeFps, timecodeMultiplier = 25., 2.
            for tcInd in tcOrderDesc[offsetStartIndex:]:
                diff = Timecode.TCSub(largestTc, timecodes[tcInd], timecodeFps)
                self.timecodeOffsets[tcInd] = Timecode.TCFtoInt(
                    diff, timecodeFps) * timecodeMultiplier

        if self.timecodeOffsets:
            print 'Video timecode offsets:', self.timecodeOffsets

        self.camera_ids = [
            'Camera %d' % ci for ci in xrange(len(movieFilenames))
        ]
        self.movies = self.movies

        if not calibrationLocation: calibrationLocation = interface.root()
        if calibrationFilename or interface.hasAttr(
                'mats', atLocation=calibrationLocation):
            if calibrationFilename:
                # TODO: Detect filetype, e.g. .cal and .xcp and handle accordingly
                try:
                    self.mats, rawCalData = OptitrackReader.load_CAL(
                        calibrationFilename)
                    if not self.mats: return False
                except IOError as e:
                    self.logger.error('Could not load calibration file: %s' %
                                      str(e))
                    return False
            else:
                self.mats = interface.attr('mats',
                                           atLocation=calibrationLocation)
                if not self.mats:
                    self.logger.error('Could not find calibration mats: %s' %
                                      calibrationLocation)
                    return False

        else:
            from GCore import Calibrate
            for ci, (cid, md) in enumerate(zip(self.camera_ids, self.movies)):
                if md is not None:
                    self.mats.append(
                        Calibrate.makeUninitialisedMat(
                            ci, (md['vheight'], md['vwidth'])))

        for md in self.movies:
            vheights.append(md['vheight'])
            vwidths.append(md['vwidth'])

        Ps = interface.getPsFromMats(self.mats)
        self.attrs = {
            'vheight': vheights,
            'vwidth': vwidths,
            'camera_ids': self.camera_ids,
            'Ps': Ps,
            'mats': self.mats,
            'colour': eval(attrs['colour'])
        }

        if self.camera_names:
            self.attrs['camera_names'] = self.camera_names

        self.initialised = True
        return True