class CrossEntropyMNLMultinomialTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.data_anes96 = sm.datasets.anes96.load() cls.y = label_binarize(cls.data_anes96.endog, classes=list(range(7))) cls.y_disturbed = old_div((cls.y + 0.01), 1.07) def test_label_encoder(self): x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) X_repeated, Y_repeated, sample_weight_repeated = \ CrossEntropyMNL._label_encoder(x, y, np.ones(3)) np.testing.assert_array_equal( X_repeated, np.array([ [1, 2, 3], [1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6], [4, 5, 6], [7, 8, 9], [7, 8, 9], [7, 8, 9]])) np.testing.assert_array_equal( Y_repeated, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2])) np.testing.assert_array_equal( sample_weight_repeated, np.array([1, 0, 0, 0, 1, 0, 0, 0, 1])) # with sample_weight x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = np.array([[0.5, 0.25, 0.25], [0.25, 0.5, 0.25], [0.25, 0.25, 0.5]]) sample_weight = np.array([0.25, 0.5, 0.25]) X_repeated, Y_repeated, sample_weight_repeated = \ CrossEntropyMNL._label_encoder(x, y, sample_weight) np.testing.assert_array_equal( X_repeated, np.array([ [1, 2, 3], [1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6], [4, 5, 6], [7, 8, 9], [7, 8, 9], [7, 8, 9]])) np.testing.assert_array_equal( Y_repeated, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2])) np.testing.assert_array_equal( sample_weight_repeated, np.array([0.125, 0.0625, 0.0625, 0.125, 0.25, 0.125, 0.0625, 0.0625, 0.125])) def test_lr(self): self.model = CrossEntropyMNL( solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=10, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y) # coefficient # predict self.assertEqual( np.sum(self.model.predict(self.data_anes96.exog) == self.data_anes96.endog), 333) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_anes96.exog, self.y), -1540.888458338286, places=3) # to_json json_dict = self.model.to_json('./tests/linear_models/CrossentropyMNL/Multinomial/') self.assertEqual(json_dict['properties']['solver'], 'newton-cg') # from_json self.model_from_json = CrossEntropyMNL.from_json(json_dict) np.testing.assert_array_almost_equal( self.model.coef, self.model_from_json.coef, decimal=3) np.testing.assert_array_almost_equal( self.model.classes, np.array(list(range(7))), decimal=3) self.assertEqual(self.model.n_classes, 7) def test_lr_disturbed(self): self.model = CrossEntropyMNL( solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=10, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y_disturbed) # coefficient # predict self.assertEqual( np.sum(self.model.predict(self.data_anes96.exog) == self.data_anes96.endog), 335) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_anes96.exog, self.y_disturbed), -1580.5280532302786, places=3) def test_lr_regularized(self): self.model = CrossEntropyMNL( solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.5, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y) # predict self.assertEqual( np.sum(self.model.predict(self.data_anes96.exog) == self.data_anes96.endog), 369) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_anes96.exog, self.y), -1466.9886103092626, places=3) def test_lr_disturbed_regularized(self): self.model = CrossEntropyMNL( solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.5, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y_disturbed) # predict self.assertEqual( np.sum(self.model.predict(self.data_anes96.exog) == self.data_anes96.endog), 366) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_anes96.exog, self.y_disturbed), -1519.9521131193064, places=3) def test_lr_sample_weight_all_half(self): self.model_half = CrossEntropyMNL( solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_anes96.exog, self.y, sample_weight=.5) self.model = CrossEntropyMNL( solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y) # coefficient np.testing.assert_array_almost_equal(self.model.coef, self.model_half.coef, decimal=3) # predict self.assertEqual( np.sum(self.model_half.predict(self.data_anes96.exog) == self.data_anes96.endog), 372) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_anes96.exog, self.y, sample_weight=.5), old_div(-1461.92274725, 2.), places=3) def test_lr_disturbed_sample_weight_all_half(self): self.model_half = CrossEntropyMNL( solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_anes96.exog, self.y_disturbed, sample_weight=.5) self.model = CrossEntropyMNL( solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y_disturbed) # coefficient np.testing.assert_array_almost_equal(self.model.coef, self.model_half.coef, decimal=3) # predict self.assertEqual( np.sum(self.model_half.predict(self.data_anes96.exog) == self.data_anes96.endog), 367) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_anes96.exog, self.y_disturbed, sample_weight=.5), old_div(-1516.50148, 2.), places=3) def test_lr_sample_weight_all_zero(self): self.model = DiscreteMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, classes=None) self.assertRaises(ValueError, self.model.fit, self.data_anes96.exog, self.y_disturbed, 0) def test_lr_sample_weight_half_zero_half_one(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) len_half = 500 self.model.fit(self.data_anes96.exog, self.y, sample_weight=np.array([1] * len_half + [0] * (self.data_anes96.exog.shape[0] - len_half))) self.model_half = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_anes96.exog[:len_half], self.y[:len_half]) # coefficient np.testing.assert_array_almost_equal( self.model.coef, self.model_half.coef, decimal=3) def test_lr_disturbed_sample_weight_half_zero_half_one(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) len_half = 500 self.model.fit(self.data_anes96.exog, self.y_disturbed, sample_weight=np.array([1] * len_half + [0] * (self.data_anes96.exog.shape[0] - len_half))) self.model_half = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_anes96.exog[:len_half], self.y_disturbed[:len_half]) # coefficient np.testing.assert_array_almost_equal( self.model.coef, self.model_half.coef, decimal=3) # corner cases def test_lr_three_data_point(self): # with regularization self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.1, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog[6:9, :], self.y[6:9, ], sample_weight=0.5) # coef self.assertEqual(self.model.coef.shape, (7, 6)) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], self.y[6:9, ]), np.array([-0.015, -0.091, -0.095]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], label_binarize([3, 1, 4], list(range(7)))), np.array([-4.201, -5.094, -2.825]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], label_binarize([3, 0, 5], list(range(7)))), np.array([-4.201, -7.352, -8.957]), decimal=3) def test_lr_disturbed_three_data_point(self): # with regularization self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.1, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog[6:9, :], self.y_disturbed[6:9, ], sample_weight=0.5) # coef self.assertEqual(self.model.coef.shape, (7, 6)) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], self.y_disturbed[6:9, ]), np.array([-0.336, -0.389, -0.398]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], label_binarize([3, 1, 4], list(range(7)))), np.array([-3.415, -4.506, -2.367]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], label_binarize([3, 0, 5], list(range(7)))), np.array([-3.415, -4.492, -4.301]), decimal=3) def test_lr_multicolinearty(self): self.model_col = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) X = np.hstack([self.data_anes96.exog[:, 0:1], self.data_anes96.exog[:, 0:1]]) self.model_col.fit(X, self.y, sample_weight=0.5) self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog[:, 0:1], self.y, sample_weight=0.5) # loglike_per_sample np.testing.assert_array_almost_equal( self.model_col.loglike_per_sample(X, self.y), self.model.loglike_per_sample(self.data_anes96.exog[:, 0:1], self.y), decimal=3) np.testing.assert_array_almost_equal( self.model_col.predict(X), self.model.predict(self.data_anes96.exog[:, 0:1]), decimal=3) def test_lr_disturbed_multicolinearty(self): self.model_col = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) X = np.hstack([self.data_anes96.exog[:, 0:1], self.data_anes96.exog[:, 0:1]]) self.model_col.fit(X, self.y_disturbed, sample_weight=0.5) self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog[:, 0:1], self.y_disturbed, sample_weight=0.5) # loglike_per_sample np.testing.assert_array_almost_equal( self.model_col.loglike_per_sample(X, self.y_disturbed), self.model.loglike_per_sample(self.data_anes96.exog[:, 0:1], self.y_disturbed), decimal=3) np.testing.assert_array_almost_equal( self.model_col.predict(X), self.model.predict(self.data_anes96.exog[:, 0:1]), decimal=3)
class CrossEntropyMNLUnaryTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.data_spector = sm.datasets.spector.load() cls.y = np.ones((cls.data_spector.endog.shape[0], 1)) def test_label_encoder(self): x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = np.array([[1], [1], [1]]) X_repeated, Y_repeated, sample_weight_repeated = \ CrossEntropyMNL._label_encoder(x, y, np.ones(3)) np.testing.assert_array_equal(X_repeated, x) np.testing.assert_array_equal( Y_repeated, np.array([0, 0, 0])) np.testing.assert_array_equal( sample_weight_repeated, np.array([1, 1, 1])) # with sample_weight x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = np.array([[1], [1], [1]]) sample_weight = np.array([0.25, 0.5, 0.25]) X_repeated, Y_repeated, sample_weight_repeated = \ CrossEntropyMNL._label_encoder(x, y, sample_weight) np.testing.assert_array_equal(X_repeated, x) np.testing.assert_array_equal( Y_repeated, np.array([0, 0, 0])) np.testing.assert_array_equal( sample_weight_repeated, sample_weight) def test_lr(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y) # coefficient np.testing.assert_array_equal( self.model.coef, np.zeros((4, 1))) # predict np.testing.assert_array_equal( self.model.predict(self.data_spector.exog), np.array([0] * self.data_spector.endog.shape[0])) # loglike/_per_sample np.testing.assert_array_equal( self.model.loglike_per_sample(self.data_spector.exog, np.array([1] * 16 + [0] * 16).reshape(-1, 1)), np.array([0] * 16 + [-np.Infinity] * 16)) def test_lr_sample_weight_all_half(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y, sample_weight=.5) # coefficient np.testing.assert_array_equal( self.model.coef, np.zeros((4, 1))) # loglike/_per_sample self.assertEqual( self.model.loglike(self.data_spector.exog, self.y, sample_weight=.5), 0) # corner cases def test_lr_one_data_point(self): # with regularization self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[4:5, :], self.y[4:5, ], sample_weight=0.5) # coef np.testing.assert_array_equal( self.model.coef, np.zeros((4, 1))) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([1, 0]).reshape(-1, 1)), np.array([0, -np.Infinity]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([1, 1]).reshape(-1, 1)), np.array([0, 0]), decimal=3)
class CrossEntropyMNLBinaryTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.data_spector = sm.datasets.spector.load() cls.y = np.array([ [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [1, 0], [1, 0], [1, 0], [0, 1], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [1, 0], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1], [1, 0], [0, 1], [0, 1], [1, 0], [0, 1]]) cls.y_disturbed = np.array([ [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.01, 0.99], [0.01, 0.99], [0.99, 0.01], [0.01, 0.99], [0.01, 0.99], [0.99, 0.01], [0.01, 0.99]]) def test_lr(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-13.021, 2.8261, .09515, 2.378]]), decimal=3) # predict np.testing.assert_array_almost_equal( self.model.predict(self.data_spector.exog), np.array((0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0.)), decimal=3) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_spector.exog, self.y), -12.8896334653335, places=3) # to_json json_dict = self.model.to_json('./tests/linear_models/CrossentropyMNL/Binary/') self.assertEqual(json_dict['properties']['solver'], 'lbfgs') # from_json self.model_from_json = CrossEntropyMNL.from_json(json_dict) np.testing.assert_array_almost_equal( self.model.coef, self.model_from_json.coef, decimal=3) np.testing.assert_array_almost_equal( self.model.classes, np.array([0, 1]), decimal=3) self.assertEqual(self.model.n_classes, 2) def test_lr_disturbed(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y_disturbed) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-12.327, 2.686, 0.089, 2.258]]), decimal=3) # predict np.testing.assert_array_almost_equal( self.model.predict(self.data_spector.exog), np.array((0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0.)), decimal=3) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_spector.exog, self.y_disturbed), -13.366314173353134, places=3) def test_lr_regularized(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.01, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-10.66, 2.364, 0.064, 2.142]]), decimal=3) # predict np.testing.assert_array_almost_equal( self.model.predict(self.data_spector.exog), np.array((0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0.)), decimal=3) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_spector.exog, self.y), -13.016861222748515, places=3) def test_lr_sample_weight_all_half(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y, sample_weight=.5) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-13.021, 2.8261, .09515, 2.378]]), decimal=3) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_spector.exog, self.y, sample_weight=.5), old_div(-12.8896334653335, 2.), places=3) def test_lr_disturbed_sample_weight_all_half(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y_disturbed, sample_weight=.5) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-12.327, 2.686, 0.089, 2.258]]), decimal=3) # predict np.testing.assert_array_almost_equal( self.model.predict(self.data_spector.exog), np.array((0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0.)), decimal=3) # loglike/_per_sample self.assertAlmostEqual( self.model.loglike(self.data_spector.exog, self.y_disturbed, sample_weight=.5), old_div(-13.366314173353134, 2.), places=3) def test_lr_sample_weight_all_zero(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.assertRaises(ValueError, self.model.fit, self.data_spector.exog, self.y, 0) def test_lr_sample_weight_half_zero_half_one(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) len_half = 8 self.model.fit(self.data_spector.exog, self.y, sample_weight=np.array([1] * len_half + [0] * (self.y.shape[0] - len_half))) self.model_half = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_spector.exog[:len_half], self.y[:len_half]) # coefficient np.testing.assert_array_almost_equal( self.model.coef, self.model_half.coef, decimal=3) def test_lr_disturbed_sample_weight_half_zero_half_one(self): self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) len_half = 8 self.model.fit(self.data_spector.exog, self.y_disturbed, sample_weight=np.array([1] * len_half + [0] * (self.y_disturbed.shape[0] - len_half))) self.model_half = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_spector.exog[:len_half], self.y_disturbed[:len_half]) # coefficient np.testing.assert_array_almost_equal( self.model.coef, self.model_half.coef, decimal=3) # corner cases def test_lr_two_data_point(self): # with regularization self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.1, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[4:6, :], self.y[4:6, ], sample_weight=0.5) # coef self.assertEqual(self.model.coef.shape, (1, 4)) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], self.y[4:6, ]), np.array([-0.495, -0.661]), decimal=3) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([[0, 0], [1, 0]])), np.array([-np.Infinity, -0.661]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([[0, 0], [0, 1]])), np.array([-np.Infinity, -0.726]), decimal=3) def test_lr_disturbed_two_data_point(self): # with regularization self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.1, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[4:6, :], self.y_disturbed[4:6, ], sample_weight=0.5) # coef self.assertEqual(self.model.coef.shape, (1, 4)) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], self.y_disturbed[4:6, ]), np.array([-0.503, -0.662]), decimal=3) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([[0, 0], [0.99, 0.01]])), np.array([-np.Infinity, -0.662]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([[0, 0], [0.01, 0.99]])), np.array([-np.Infinity, -0.725]), decimal=3) def test_lr_multicolinearty(self): self.model_col = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) X = np.hstack([self.data_spector.exog[:, 0:1], self.data_spector.exog[:, 0:1]]) self.model_col.fit(X, self.y, sample_weight=0.5) self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[:, 0:1], self.y, sample_weight=0.5) np.testing.assert_array_almost_equal( self.model_col.coef, np.array([[-9.703, 1.42002783, 1.42002783]]), decimal=3) # loglike_per_sample np.testing.assert_array_almost_equal( self.model_col.loglike_per_sample(X, self.y), self.model.loglike_per_sample(self.data_spector.exog[:, 0:1], self.y), decimal=3) np.testing.assert_array_almost_equal( self.model_col.predict(X), self.model.predict(self.data_spector.exog[:, 0:1]), decimal=3) def test_lr_disturbed_multicolinearty(self): self.model_col = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) X = np.hstack([self.data_spector.exog[:, 0:1], self.data_spector.exog[:, 0:1]]) self.model_col.fit(X, self.y_disturbed, sample_weight=0.5) self.model = CrossEntropyMNL( solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[:, 0:1], self.y_disturbed, sample_weight=0.5) np.testing.assert_array_almost_equal( self.model_col.coef, np.array([[-9.359, 1.37, 1.37]]), decimal=3) # loglike_per_sample np.testing.assert_array_almost_equal( self.model_col.loglike_per_sample(X, self.y_disturbed), self.model.loglike_per_sample(self.data_spector.exog[:, 0:1], self.y_disturbed), decimal=3) np.testing.assert_array_almost_equal( self.model_col.predict(X), self.model.predict(self.data_spector.exog[:, 0:1]), decimal=3)
class CrossEntropyMNLMultinomialTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.data_anes96 = sm.datasets.anes96.load() cls.y = label_binarize(cls.data_anes96.endog, classes=list(range(7))) cls.y_disturbed = old_div((cls.y + 0.01), 1.07) def test_label_encoder(self): x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) X_repeated, Y_repeated, sample_weight_repeated = \ CrossEntropyMNL._label_encoder(x, y, np.ones(3)) np.testing.assert_array_equal( X_repeated, np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6], [4, 5, 6], [7, 8, 9], [7, 8, 9], [7, 8, 9]])) np.testing.assert_array_equal(Y_repeated, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2])) np.testing.assert_array_equal(sample_weight_repeated, np.array([1, 0, 0, 0, 1, 0, 0, 0, 1])) # with sample_weight x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = np.array([[0.5, 0.25, 0.25], [0.25, 0.5, 0.25], [0.25, 0.25, 0.5]]) sample_weight = np.array([0.25, 0.5, 0.25]) X_repeated, Y_repeated, sample_weight_repeated = \ CrossEntropyMNL._label_encoder(x, y, sample_weight) np.testing.assert_array_equal( X_repeated, np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6], [4, 5, 6], [7, 8, 9], [7, 8, 9], [7, 8, 9]])) np.testing.assert_array_equal(Y_repeated, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2])) np.testing.assert_array_equal( sample_weight_repeated, np.array([ 0.125, 0.0625, 0.0625, 0.125, 0.25, 0.125, 0.0625, 0.0625, 0.125 ])) def test_lr(self): self.model = CrossEntropyMNL(solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=10, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y) # coefficient # predict self.assertEqual( np.sum( self.model.predict(self.data_anes96.exog) == self.data_anes96.endog), 333) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_anes96.exog, self.y), -1540.888458338286, places=3) # to_json json_dict = self.model.to_json( './tests/linear_models/CrossentropyMNL/Multinomial/') self.assertEqual(json_dict['properties']['solver'], 'newton-cg') # from_json self.model_from_json = CrossEntropyMNL.from_json(json_dict) np.testing.assert_array_almost_equal(self.model.coef, self.model_from_json.coef, decimal=3) np.testing.assert_array_almost_equal(self.model.classes, np.array(list(range(7))), decimal=3) self.assertEqual(self.model.n_classes, 7) def test_lr_disturbed(self): self.model = CrossEntropyMNL(solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=10, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y_disturbed) # coefficient # predict self.assertEqual( np.sum( self.model.predict(self.data_anes96.exog) == self.data_anes96.endog), 335) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_anes96.exog, self.y_disturbed), -1580.5280532302786, places=3) def test_lr_regularized(self): self.model = CrossEntropyMNL(solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.5, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y) # predict self.assertEqual( np.sum( self.model.predict(self.data_anes96.exog) == self.data_anes96.endog), 369) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_anes96.exog, self.y), -1466.9886103092626, places=3) def test_lr_disturbed_regularized(self): self.model = CrossEntropyMNL(solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.5, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y_disturbed) # predict self.assertEqual( np.sum( self.model.predict(self.data_anes96.exog) == self.data_anes96.endog), 366) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_anes96.exog, self.y_disturbed), -1519.9521131193064, places=3) def test_lr_sample_weight_all_half(self): self.model_half = CrossEntropyMNL(solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_anes96.exog, self.y, sample_weight=.5) self.model = CrossEntropyMNL(solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y) # coefficient np.testing.assert_array_almost_equal(self.model.coef, self.model_half.coef, decimal=3) # predict self.assertEqual( np.sum( self.model_half.predict(self.data_anes96.exog) == self.data_anes96.endog), 372) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_anes96.exog, self.y, sample_weight=.5), old_div(-1461.92274725, 2.), places=3) def test_lr_disturbed_sample_weight_all_half(self): self.model_half = CrossEntropyMNL(solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_anes96.exog, self.y_disturbed, sample_weight=.5) self.model = CrossEntropyMNL(solver='newton-cg', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog, self.y_disturbed) # coefficient np.testing.assert_array_almost_equal(self.model.coef, self.model_half.coef, decimal=3) # predict self.assertEqual( np.sum( self.model_half.predict(self.data_anes96.exog) == self.data_anes96.endog), 367) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_anes96.exog, self.y_disturbed, sample_weight=.5), old_div(-1516.50148, 2.), places=3) def test_lr_sample_weight_all_zero(self): self.model = DiscreteMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, classes=None) self.assertRaises(ValueError, self.model.fit, self.data_anes96.exog, self.y_disturbed, 0) def test_lr_sample_weight_half_zero_half_one(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) len_half = 500 self.model.fit(self.data_anes96.exog, self.y, sample_weight=np.array( [1] * len_half + [0] * (self.data_anes96.exog.shape[0] - len_half))) self.model_half = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_anes96.exog[:len_half], self.y[:len_half]) # coefficient np.testing.assert_array_almost_equal(self.model.coef, self.model_half.coef, decimal=3) def test_lr_disturbed_sample_weight_half_zero_half_one(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) len_half = 500 self.model.fit(self.data_anes96.exog, self.y_disturbed, sample_weight=np.array( [1] * len_half + [0] * (self.data_anes96.exog.shape[0] - len_half))) self.model_half = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_anes96.exog[:len_half], self.y_disturbed[:len_half]) # coefficient np.testing.assert_array_almost_equal(self.model.coef, self.model_half.coef, decimal=3) # corner cases def test_lr_three_data_point(self): # with regularization self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.1, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog[6:9, :], self.y[6:9, ], sample_weight=0.5) # coef self.assertEqual(self.model.coef.shape, (7, 6)) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], self.y[6:9, ]), np.array([-0.015, -0.091, -0.095]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], label_binarize([3, 1, 4], list(range(7)))), np.array([-4.201, -5.094, -2.825]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], label_binarize([3, 0, 5], list(range(7)))), np.array([-4.201, -7.352, -8.957]), decimal=3) def test_lr_disturbed_three_data_point(self): # with regularization self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.1, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog[6:9, :], self.y_disturbed[6:9, ], sample_weight=0.5) # coef self.assertEqual(self.model.coef.shape, (7, 6)) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], self.y_disturbed[6:9, ]), np.array([-0.336, -0.389, -0.398]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], label_binarize([3, 1, 4], list(range(7)))), np.array([-3.415, -4.506, -2.367]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_anes96.exog[6:9, :], label_binarize([3, 0, 5], list(range(7)))), np.array([-3.415, -4.492, -4.301]), decimal=3) def test_lr_multicolinearty(self): self.model_col = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) X = np.hstack( [self.data_anes96.exog[:, 0:1], self.data_anes96.exog[:, 0:1]]) self.model_col.fit(X, self.y, sample_weight=0.5) self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog[:, 0:1], self.y, sample_weight=0.5) # loglike_per_sample np.testing.assert_array_almost_equal( self.model_col.loglike_per_sample(X, self.y), self.model.loglike_per_sample(self.data_anes96.exog[:, 0:1], self.y), decimal=3) np.testing.assert_array_almost_equal( self.model_col.predict(X), self.model.predict(self.data_anes96.exog[:, 0:1]), decimal=3) def test_lr_disturbed_multicolinearty(self): self.model_col = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) X = np.hstack( [self.data_anes96.exog[:, 0:1], self.data_anes96.exog[:, 0:1]]) self.model_col.fit(X, self.y_disturbed, sample_weight=0.5) self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_anes96.exog[:, 0:1], self.y_disturbed, sample_weight=0.5) # loglike_per_sample np.testing.assert_array_almost_equal( self.model_col.loglike_per_sample(X, self.y_disturbed), self.model.loglike_per_sample(self.data_anes96.exog[:, 0:1], self.y_disturbed), decimal=3) np.testing.assert_array_almost_equal( self.model_col.predict(X), self.model.predict(self.data_anes96.exog[:, 0:1]), decimal=3)
class CrossEntropyMNLUnaryTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.data_spector = sm.datasets.spector.load() cls.y = np.ones((cls.data_spector.endog.shape[0], 1)) def test_label_encoder(self): x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = np.array([[1], [1], [1]]) X_repeated, Y_repeated, sample_weight_repeated = \ CrossEntropyMNL._label_encoder(x, y, np.ones(3)) np.testing.assert_array_equal(X_repeated, x) np.testing.assert_array_equal(Y_repeated, np.array([0, 0, 0])) np.testing.assert_array_equal(sample_weight_repeated, np.array([1, 1, 1])) # with sample_weight x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) y = np.array([[1], [1], [1]]) sample_weight = np.array([0.25, 0.5, 0.25]) X_repeated, Y_repeated, sample_weight_repeated = \ CrossEntropyMNL._label_encoder(x, y, sample_weight) np.testing.assert_array_equal(X_repeated, x) np.testing.assert_array_equal(Y_repeated, np.array([0, 0, 0])) np.testing.assert_array_equal(sample_weight_repeated, sample_weight) def test_lr(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y) # coefficient np.testing.assert_array_equal(self.model.coef, np.zeros((4, 1))) # predict np.testing.assert_array_equal( self.model.predict(self.data_spector.exog), np.array([0] * self.data_spector.endog.shape[0])) # loglike/_per_sample np.testing.assert_array_equal( self.model.loglike_per_sample( self.data_spector.exog, np.array([1] * 16 + [0] * 16).reshape(-1, 1)), np.array([0] * 16 + [-np.Infinity] * 16)) def test_lr_sample_weight_all_half(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y, sample_weight=.5) # coefficient np.testing.assert_array_equal(self.model.coef, np.zeros((4, 1))) # loglike/_per_sample self.assertEqual( self.model.loglike(self.data_spector.exog, self.y, sample_weight=.5), 0) # corner cases def test_lr_one_data_point(self): # with regularization self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[4:5, :], self.y[4:5, ], sample_weight=0.5) # coef np.testing.assert_array_equal(self.model.coef, np.zeros((4, 1))) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([1, 0]).reshape(-1, 1)), np.array([0, -np.Infinity]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([1, 1]).reshape(-1, 1)), np.array([0, 0]), decimal=3)
class CrossEntropyMNLBinaryTests(unittest.TestCase): @classmethod def setUpClass(cls): cls.data_spector = sm.datasets.spector.load() cls.y = np.array([[1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [1, 0], [1, 0], [1, 0], [0, 1], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [0, 1], [1, 0], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1], [0, 1], [1, 0], [0, 1], [0, 1], [1, 0], [0, 1]]) cls.y_disturbed = np.array([[0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.01, 0.99], [0.99, 0.01], [0.99, 0.01], [0.01, 0.99], [0.01, 0.99], [0.01, 0.99], [0.99, 0.01], [0.01, 0.99], [0.01, 0.99], [0.99, 0.01], [0.01, 0.99]]) def test_lr(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-13.021, 2.8261, .09515, 2.378]]), decimal=3) # predict np.testing.assert_array_almost_equal( self.model.predict(self.data_spector.exog), np.array((0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0.)), decimal=3) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_spector.exog, self.y), -12.8896334653335, places=3) # to_json json_dict = self.model.to_json( './tests/linear_models/CrossentropyMNL/Binary/') self.assertEqual(json_dict['properties']['solver'], 'lbfgs') # from_json self.model_from_json = CrossEntropyMNL.from_json(json_dict) np.testing.assert_array_almost_equal(self.model.coef, self.model_from_json.coef, decimal=3) np.testing.assert_array_almost_equal(self.model.classes, np.array([0, 1]), decimal=3) self.assertEqual(self.model.n_classes, 2) def test_lr_disturbed(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y_disturbed) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-12.327, 2.686, 0.089, 2.258]]), decimal=3) # predict np.testing.assert_array_almost_equal( self.model.predict(self.data_spector.exog), np.array((0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0.)), decimal=3) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_spector.exog, self.y_disturbed), -13.366314173353134, places=3) def test_lr_regularized(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.01, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-10.66, 2.364, 0.064, 2.142]]), decimal=3) # predict np.testing.assert_array_almost_equal( self.model.predict(self.data_spector.exog), np.array((0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0.)), decimal=3) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_spector.exog, self.y), -13.016861222748515, places=3) def test_lr_sample_weight_all_half(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y, sample_weight=.5) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-13.021, 2.8261, .09515, 2.378]]), decimal=3) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_spector.exog, self.y, sample_weight=.5), old_div(-12.8896334653335, 2.), places=3) def test_lr_disturbed_sample_weight_all_half(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog, self.y_disturbed, sample_weight=.5) # coefficient np.testing.assert_array_almost_equal( self.model.coef, np.array([[-12.327, 2.686, 0.089, 2.258]]), decimal=3) # predict np.testing.assert_array_almost_equal( self.model.predict(self.data_spector.exog), np.array((0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 1., 1., 0., 1., 0., 1., 1., 1., 0.)), decimal=3) # loglike/_per_sample self.assertAlmostEqual(self.model.loglike(self.data_spector.exog, self.y_disturbed, sample_weight=.5), old_div(-13.366314173353134, 2.), places=3) def test_lr_sample_weight_all_zero(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.assertRaises(ValueError, self.model.fit, self.data_spector.exog, self.y, 0) def test_lr_sample_weight_half_zero_half_one(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) len_half = 8 self.model.fit(self.data_spector.exog, self.y, sample_weight=np.array([1] * len_half + [0] * (self.y.shape[0] - len_half))) self.model_half = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_spector.exog[:len_half], self.y[:len_half]) # coefficient np.testing.assert_array_almost_equal(self.model.coef, self.model_half.coef, decimal=3) def test_lr_disturbed_sample_weight_half_zero_half_one(self): self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) len_half = 8 self.model.fit( self.data_spector.exog, self.y_disturbed, sample_weight=np.array([1] * len_half + [0] * (self.y_disturbed.shape[0] - len_half))) self.model_half = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model_half.fit(self.data_spector.exog[:len_half], self.y_disturbed[:len_half]) # coefficient np.testing.assert_array_almost_equal(self.model.coef, self.model_half.coef, decimal=3) # corner cases def test_lr_two_data_point(self): # with regularization self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.1, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[4:6, :], self.y[4:6, ], sample_weight=0.5) # coef self.assertEqual(self.model.coef.shape, (1, 4)) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], self.y[4:6, ]), np.array([-0.495, -0.661]), decimal=3) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([[0, 0], [1, 0]])), np.array([-np.Infinity, -0.661]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([[0, 0], [0, 1]])), np.array([-np.Infinity, -0.726]), decimal=3) def test_lr_disturbed_two_data_point(self): # with regularization self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=.1, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[4:6, :], self.y_disturbed[4:6, ], sample_weight=0.5) # coef self.assertEqual(self.model.coef.shape, (1, 4)) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], self.y_disturbed[4:6, ]), np.array([-0.503, -0.662]), decimal=3) # loglike_per_sample np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([[0, 0], [0.99, 0.01]])), np.array([-np.Infinity, -0.662]), decimal=3) np.testing.assert_array_almost_equal(self.model.loglike_per_sample( self.data_spector.exog[4:6, :], np.array([[0, 0], [0.01, 0.99]])), np.array([-np.Infinity, -0.725]), decimal=3) def test_lr_multicolinearty(self): self.model_col = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) X = np.hstack( [self.data_spector.exog[:, 0:1], self.data_spector.exog[:, 0:1]]) self.model_col.fit(X, self.y, sample_weight=0.5) self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[:, 0:1], self.y, sample_weight=0.5) np.testing.assert_array_almost_equal( self.model_col.coef, np.array([[-9.703, 1.42002783, 1.42002783]]), decimal=3) # loglike_per_sample np.testing.assert_array_almost_equal( self.model_col.loglike_per_sample(X, self.y), self.model.loglike_per_sample(self.data_spector.exog[:, 0:1], self.y), decimal=3) np.testing.assert_array_almost_equal( self.model_col.predict(X), self.model.predict(self.data_spector.exog[:, 0:1]), decimal=3) def test_lr_disturbed_multicolinearty(self): self.model_col = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) X = np.hstack( [self.data_spector.exog[:, 0:1], self.data_spector.exog[:, 0:1]]) self.model_col.fit(X, self.y_disturbed, sample_weight=0.5) self.model = CrossEntropyMNL(solver='lbfgs', fit_intercept=True, est_stderr=True, reg_method='l2', alpha=0, l1_ratio=0, tol=1e-4, max_iter=100, coef=None, stderr=None, n_classes=None) self.model.fit(self.data_spector.exog[:, 0:1], self.y_disturbed, sample_weight=0.5) np.testing.assert_array_almost_equal(self.model_col.coef, np.array([[-9.359, 1.37, 1.37]]), decimal=3) # loglike_per_sample np.testing.assert_array_almost_equal( self.model_col.loglike_per_sample(X, self.y_disturbed), self.model.loglike_per_sample(self.data_spector.exog[:, 0:1], self.y_disturbed), decimal=3) np.testing.assert_array_almost_equal( self.model_col.predict(X), self.model.predict(self.data_spector.exog[:, 0:1]), decimal=3)