def merge_results_d(result_a, result_b, repository): if result_a.label_map != result_b.label_map: print('error, label mappings dont match, intervention required') Tracer()() class_to_idx = result_a.label_map samples_1 = repository.get_samples_by_uid(result_a.ids) samples_2 = repository.get_samples_by_uid(result_b.ids) templates_1 = repository.get_templates_by_uid(result_a.template_order, samples_1) templates_2 = repository.get_templates_by_uid(result_b.template_order, samples_2) Tracer()() X_a, y_a, ids_a = extract_features(samples_1, templates_2, class_to_idx) X_b, y_b, ids_b = extract_features(samples_2, templates_1, class_to_idx) # take special notice to the flipped use of feature vectors due to # template matching results concatentation for i, x in enumerate(result_a.X): X_a[i].extend(x) for i, x in enumerate(X_b): result_b.X[i].extend(x) data = FeatureData() data.X = X_a + result_b.X data.y = result_a.y + result_b.y data.ids = result_a.ids + result_b.ids data.label_map = class_to_idx data.template_order = result_a.template_order + result_b.template_order
def run(batch_size,nb_classes,nb_epoch,data_augmentation,img_rows, img_cols,img_channels,weightfilepath,logfilepath,bestweightfilepath,Load_model ): #function to run the actual test # the data, shuffled and split between train and test sets X_train,y_train,X_test,y_test,X_val,y_val = load_data() X_train,Y_train,X_test,Y_test,X_val,Y_val = normalize_date(X_train,y_train,X_test,y_test,X_val,y_val,nb_classes) print('Loading and formatiing of data complete...') #load the model defined in model_architecture function model = model_architecture(img_rows,img_cols,img_channels,nb_classes) # training the model using SGD + momentum adm = Adam(lr=0.00001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) model.compile(loss='categorical_crossentropy', optimizer=adm, metrics=[get_categorical_accuracy_keras]) if Load_model: Tracer()() model.load_weights(weightfilepath ) save_model_per_epoch = ModelCheckpoint1(weightfilepath,logfilepath,bestweightfilepath, monitor='val_loss', verbose=1, save_best_only=False) model.fit(X_train,Y_train, batch_size=batch_size, nb_epoch=nb_epoch, validation_data=(X_val, Y_val), shuffle=True, verbose=2, callbacks=[save_model_per_epoch])
def coco_modify_segs(self): for count, im_idx in enumerate(self.D.image_index): if count % 100 == 0: print 'Image {:d} of {:d}'.format(count, len(self.D.image_index)) seg_filename = self.D.seg_path_from_index(im_idx) im = cv2.imread(im_filename) if im is None: print 'Could not read ', im_filename sys.exit(-1) seg = self.get_seg(im) # get annotations c = self.D._COCO ann_ids = c.getAnnIds(imgIds=im_idx, iscrowd=False) anns = c.loadAnns(ann_ids) mask = np.zeros(seg.shape, dtype=np.int) for ann in anns: if 'segmentation' not in ann: continue cat_id = ann['category_id'] + 9 if type(ann['segmentation']) == list: for s in ann['segmentation']: poly = np.array(s).reshape((len(s) / 2, 2)) poly = Polygon(poly) pth = path.Path(poly.get_xy(), closed=True) y, x = np.mgrid[:seg.shape[0], :seg.shape[1]] points = np.transpose((x.ravel(), y.ravel())) m = pth.contains_points(points).reshape(mask.shape) mask[m > 0] = cat_id * m[m > 0] else: Tracer()() # superimpose mask on seg seg[mask > 0] = mask[mask > 0] cv2.imwrite(seg_filename, seg)
def store_media_data(self,broadcast_data,entry_name,broadcast_key): self.download_media_data.update(broadcast_data) create_broadcast_view(self.download_media_data,self.left_box) broadcast_data[broadcast_key]['episodes'][entry_name] = self.download_dict[entry_name] Tracer()() create_episode_view(self.download_media_data["episodes"][entry_name],self.middle_box)
def map_FirstHaloInFOFgroup(self,tree): first_halo = np.empty(len(tree),np.int32) first_halo.fill(-1) host_inds = (np.where(tree['pid'] == -1))[0] if len(host_inds) > 0: ## Host halos points to themselves first_halo[host_inds] = host_inds ## Now set the subhalos hostids = tree['id'][host_inds] for host_loc,hostid in zip(host_inds,hostids): ind_subs = (np.where(tree['pid'] == hostid))[0] if len(ind_subs) > 0: assert np.max(first_halo[ind_subs]) == -1,'First halo inds should not already have been assigned' first_halo[ind_subs] = host_loc if min(first_halo) < 0: Tracer()() return first_halo print("tree = {}".format(tree)) print("returning none. expect code to break") return None
def breakpoint(): try: from IPython.core.debugger import Tracer Tracer()() except: import pdb pdb.set_trace()
def main(): file_names = get_data_file_names() game_logs_created = 0 start_connection() for fname in file_names: with open('pickles/{}'.format(fname), 'rb') as f: season, season_type, team = get_info_from_filename(fname) lines = map(lambda x: x.split(), filter(lambda x: len(x) > 10, f.readlines())) for gl in lines[1:]: gl[0] = gl[0][ 2:] # removes 'aV' from first element of each row try: create_gamelog(gl, season, season_type, team) game_logs_created += 1 except: Tracer()() pass print fname + ': ' + str(len(lines[1:])) print str(game_logs_created) + ' game logs created.'
def TracerFactory(): """ Returns a callable `Tracer` object. When this object is called it starts the ipython commandline debugger in that place. """ return Tracer(colors='Linux')
def canonical_cumsum(array, n, axis, crop=True): from IPython.core.debugger import Tracer debug_here = Tracer() ''' Input: > array : np-array or list > n : windowsize (n>0) > axis : axis along which the cumsum will be taken > crop : bool | will crop the beginning of the output array, where the sum runs over uncomplete window. note: if ndim of array is >1 then the output will always be cropped. --> did not find a function like np.take to /access/ an array. ''' ndims = len(array.shape) # pandas doesn't know negative axes-allocation if axis < 0: axis = ndims + axis if n <= 0: sys.exis('The windowsize n must be chosen greater than 0!') if ndims == 1: b = utils_ana.nancumsum(array) b[n:] = b[n:] - b[:-n] if crop == True: b = b[n - 1:] return (b) else: lenax = array.shape[axis] b = utils_ana.nancumsum(array, axis=axis) b_first = np.expand_dims(np.take(b, n - 1, axis=axis), axis=axis) c = np.take(b, np.arange(n, lenax), axis=axis) - np.take( b, np.arange(lenax - n), axis=axis) d = np.concatenate((b_first, c), axis=axis) return (d)
def train_step(self, data, **kwargs): # torch.autograd.set_detect_anomaly(True) loss, data_dict, r = self.model( data['X'], actions=data['action'].cuda().float(), rewards=data['reward'].cuda().float().squeeze(-1), mask=data['done'].cuda().float().squeeze(-1), pretrain=kwargs['pretrain']) self.optimizer.zero_grad() torch.mean(-1. * loss).backward() if self.clip_gradient: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip_gradient_value) for n, p in self.model.named_parameters(): if p.grad is not None: # print(f'{n}: {p.grad.max()} {p.grad.min()} {p.grad.mean()}') if not torch.isfinite(p.grad.mean()): from IPython.core.debugger import Tracer Tracer()() self.optimizer.step() # if self.num_steps % 150 == 0 and kwargs['visdom']: # if kwargs['pretrain']: # self.visdom_logger.log_visdom(data['X'].flatten(end_dim=1), data_dict['masks'], data_dict['reconstruction'], 6) # else: # self.visdom_logger.log_visdom(data['X'][0], data_dict['masks'][0], data_dict['reconstruction'][0], 6) self.num_steps += 1 return data_dict
def parse_tweet(self, tweet, response): tweet_item = items.TwitterscraperItem() tweet_item['session_id'] = self.session_id tweet_item['tweet_id'] = tweet['tweet_id'] tweet_item['text'] = tweet['text'] tweet_item['user_id'] = tweet['user_id'] tweet_item['user_screen_name'] = tweet['user_screen_name'] tweet_item['user_name'] = tweet['user_name'] tweet_item['created_at_ts'] = tweet['created_at_ts'] tweet_item['created_at_iso'] = tweet['created_at_iso'] # tweet_item['convo_url'] = tweet['convo_url'] # tweet_item['image_url'] = tweet['image_url'] tweet_item['num_retweets'] = tweet['num_retweets'] tweet_item['num_favorites'] = tweet['num_favorites'] tweet_item['keyword'] = tweet['keyword'] tweet_item['query'] = self.query # referring_url = response.request.headers.get('Referer', None) tweet_item['referring_url'] = response.request.headers.get( 'Referer', None) or self.start_urls[0] tweet_item['request_url'] = response.url tweet_item['quote_tweet_id'] = tweet['quote_tweet_userid'] tweet_item['quote_tweet_userid'] = tweet['quote_tweet_userid'] tweet_item['quote_tweet_username'] = tweet['quote_tweet_username'] tweet_item['quote_tweet_screenname'] = tweet['quote_tweet_screenname'] tweet_item['quote_tweet_text'] = tweet['quote_tweet_text'] try: tweet_item['html'] = tweet['html'] except Exception, e: Tracer()() pass
def button_press_callback(self, event): """Left button: add point; middle button: delete point; right button: fill polygon and stop interaction. """ from IPython.core.debugger import Tracer Tracer()() if event.inaxes: x, y = event.xdata, event.ydata ax = event.inaxes if event.button == 1: # If you press the left button if self.circ == None: # if there is no line, create a line self.circ = plt.Circle((x, y), 0.5, facecolor='none', edgecolor='r') ax.add_artist(self.circ) # add a segment else: # if there is a line, create a segment self.circ.set_color('b') self.circ.set_alpha(0.3) self.disconnect() elif event.button == 3 and self.circ != None: # middle button: remove last segment # ax.artists.remove(self.circ) self.circ.remove() self.circ = None self.fig.canvas.draw()
def iou_calc(self, boxes1, boxes2): #x, y, w, h boxes1 = torch.stack([boxes1[:, :, :, 0] - boxes1[:, :, :, 2] / 2.0, boxes1[:, :, :, 1] - boxes1[:, :, :, 3] / 2.0, boxes1[:, :, :, 0] + boxes1[:, :, :, 2] / 2.0, boxes1[:, :, :, 1] + boxes1[:, :, :, 3] / 2.0]) boxes1 = boxes1.permute(1, 2, 3, 0) boxes2 = torch.stack([boxes2[:, :, :, 0] - boxes2[:, :, :, 2] / 2.0, boxes2[:, :, :, 1] - boxes2[:, :, :, 3] / 2.0, boxes2[:, :, :, 0] + boxes2[:, :, :, 2] / 2.0, boxes2[:, :, :, 1] + boxes2[:, :, :, 3] / 2.0]) boxes2 = boxes2.permute(1, 2, 3, 0) # calculate the left up point & right down point lu = torch.max(boxes1[:, :, :, :2], boxes2[:, :, :, :2]) rb = torch.min(boxes1[:, :, :, 2:], boxes2[:, :, :, 2:]) # intersection intersection = torch.max((rb - lu), Variable(torch.zeros(rb.size()))) inter_square = intersection[:, :, :, 0] * intersection[:, :, :, 1] square1 = (boxes1[:, :, :, 2] - boxes1[:, :, :, 0]) * \ (boxes1[:, :, :, 3] - boxes1[:, :, :, 1]) square2 = (boxes2[:, :, :, 2] - boxes2[:, :, :, 0]) * \ (boxes2[:, :, :, 3] - boxes2[:, :, :, 1]) square1 = torch.clamp(square1, 0.00001, self.img_size*self.img_size) square2 = torch.clamp(square2, 0.00001, self.img_size*self.img_size) union_square = square1 + square2 - inter_square result = inter_square / union_square if math.isnan(torch.sum(result).data.cpu().numpy()): Tracer()() return result #shape = (batch_size, 7, 7, 2)
def open_logs(season, season_type, team): driver = get_page_driver(BASE_URL) #soup = BS(driver.page_source, 'html.parser') close_stat_filter(driver) select_options(driver, season, season_type, team) press_run_button(driver) open_all_logs(driver) rows = get_table_rows(driver) Tracer()()
def get_U(pulse, wd, gate=None, J_T=None, dissipation=True, keep_runfolder=None): """Propagate pulse in the given rotating frame, using the non-Hermitian Schrödinger equation, and return the resulting (non-unitary, due to population loss) gate U""" assert 5000 < wd < 7000 assert isinstance(pulse, QDYN.pulse.Pulse) rf = get_temp_runfolder('evaluate_universal_hs') n_qubit = 5 n_cavity = 6 kappa = list(np.arange(n_cavity) * 0.05)[1:-1] + [10000.0, ] # MHz gamma = [0.012, 0.024, 0.033, 10000.0] # MHz if not dissipation: kappa = list(np.arange(n_cavity) * 0.0)[1:-1] + [0.0, ] # MHz gamma = [0.0, 0.0, 0.0, 0.0] # MHz if gate is None: gate = GATE['BGATE'] assert isinstance(gate, QDYN.gate2q.Gate2Q) if J_T is None: J_T = 'sm' model = transmon_model( n_qubit, n_cavity, w1, w2, wc, wd, alpha1, alpha2, g, gamma, kappa, lambda_a=1.0, pulse=pulse, dissipation_model='non-Hermitian', gate=gate, J_T=J_T, iter_stop=1) # write to runfolder model.write_to_runfolder(rf) np.savetxt( os.path.join(rf, 'rwa_vector.dat'), model.rwa_vector, header='rwa vector [MHz]') gate.write(os.path.join(rf, 'target_gate.dat'), format='array') # propagate env = os.environ.copy() env['OMP_NUM_THREADS'] = '4' try: stdout = sp.check_output( ['qdyn_prop_gate', '--internal-units=GHz_units.txt', rf], env=env, universal_newlines=True) except sp.CalledProcessError as exc_info: from IPython.core.debugger import Tracer Tracer()() print(exc_info) # evaluate error for U_t in get_prop_gate_of_t(os.path.join(rf, 'U_over_t.dat')): U = U_t if keep_runfolder is not None: if os.path.isdir(keep_runfolder): rmtree(keep_runfolder) copytree(rf, keep_runfolder) rmtree(rf) return U
def translate_nfhs_to_geo(state, district): res = get_proper_state_name((state, district)) all = [] for r in res: if r in map_names: all.append(map_names[r]) if len(all) == 0: Tracer()() return all
def iou_calc(self, boxes1, boxes2): #x, y, w, h boxes1 = torch.stack([boxes1[:, :, :, :, 0] - boxes1[:, :, :, :, 2] / 2.0, boxes1[:, :, :, :, 1] - boxes1[:, :, :, :, 3] / 2.0, boxes1[:, :, :, :, 0] + boxes1[:, :, :, :, 2] / 2.0, boxes1[:, :, :, :, 1] + boxes1[:, :, :, :, 3] / 2.0]) boxes1 = boxes1.permute(1, 2, 3, 4, 0) boxes2 = torch.stack([boxes2[:, :, :, :, 0] - boxes2[:, :, :, :, 2] / 2.0, boxes2[:, :, :, :, 1] - boxes2[:, :, :, :, 3] / 2.0, boxes2[:, :, :, :, 0] + boxes2[:, :, :, :, 2] / 2.0, boxes2[:, :, :, :, 1] + boxes2[:, :, :, :, 3] / 2.0]) boxes2 = boxes2.permute(1, 2, 3, 4, 0) # print('boxes1') # print(boxes1) # print('boxes2') # print (boxes2) # calculate the left up point & right down point lu = torch.max(boxes1[:, :, :, :, :2], boxes2[:, :, :, :, :2]) rb = torch.min(boxes1[:, :, :, :, 2:], boxes2[:, :, :, :, 2:]) # print('lu') # print(lu) # print('rb') # print(rb) # intersection intersection = torch.max((rb - lu), Variable(torch.zeros(rb.size()))) inter_square = intersection[:, :, :, :, 0] * intersection[:, :, :, :, 1] # print('intersection') # print(intersection) # print('inter_square') # print(inter_square) square1 = (boxes1[:, :, :, :, 2] - boxes1[:, :, :, :, 0]) * \ (boxes1[:, :, :, :, 3] - boxes1[:, :, :, :, 1]) square2 = (boxes2[:, :, :, :, 2] - boxes2[:, :, :, :, 0]) * \ (boxes2[:, :, :, :, 3] - boxes2[:, :, :, :, 1]) square1 = torch.clamp(square1, 0.00001, self.img_size*self.img_size) square2 = torch.clamp(square2, 0.00001, self.img_size*self.img_size) # print('square1') # print(square1) # print('square2') # print(square2) union_square = square1 + square2 - inter_square # print('uniou_square') # print(union_square) # print('iou') # print(inter_square / union_square) result = inter_square / union_square # for i0 in range(100): # for i1 in range(7): # for i2 in range(7): # for i3 in range(2): # if math.isnan(result[i0,i1,i2,i3].data.cpu().numpy()): # Tracer()() if math.isnan(torch.sum(result).data.cpu().numpy()): Tracer()() return result #shape = (batch_size, 7, 7, 2)
def _do_start(_startc): if _startc != 0: Tracer()() if _startc > 3: try_again = False print('ERROR COULD NOT START PROCESSES {} TIMES.'.format(_startc)) Tracer()() if not try_again: return for pidx in xrange(num_proc): try: procs[pidx].start() except OSError as e: print('Error: {}'.format(e)) if pidx is 0: _do_start(_startc + 1) else: print('WARNING: pidx != 0: {}'.format(pidx)) Tracer()()
def valid_eval_tfomics(nnt, val_dat, N=14, fragLen=330): """ Properly calidates current CNN filters by passing filters over retained validation set N number of times and averaging the set of predictions for each pair inputs--- nnt: tfomics nntrainer object val_dat: 2-D numpy array of downsampled fluorescence traces N: number of separate start positions for each test fragment to be averaged for each pair fragLen: length of trained CNN filter, in time points/samples outputs--- pred_lbl: 1-D numpy array of predicted connectivity """ avg_F = np.mean(val_dat,axis=0) startgap = np.ceil((val_dat.shape[1] - fragLen)/N).astype('int') pred_lbl = np.zeros((val_dat.shape[0]*val_dat.shape[0],), dtype='float32') # Counter for the "pred_lbl" array cnt_u = 0 for a in range(val_dat.shape[0]): if a%100 == 0: print('\r' + 'X'*(a//100)) # Create batch array to send thru network im_eval = np.empty((N*val_dat.shape[0],3,fragLen,1), dtype='float32') # Count the number of traces in each batch cnt = 0 for b in range(val_dat.shape[0]): for n in range(0, val_dat.shape[1] - fragLen, startgap): try: im_eval[cnt,:,:,0] = np.vstack((val_dat[a,n:n+fragLen], val_dat[b,n:n+fragLen], avg_F[n:n+fragLen])) except: from IPython.core.debugger import Tracer Tracer()() cnt += 1 #im_eval = np.tile(im_eval,(100,1,1,1)) # Run batch through network test = {'inputs': im_eval, 'keep_prob_dense': 1, 'keep_prob_conv': 1, 'is_training': False} pred_stop = nnt.get_activations(test, layer='output')[:,0] # Average output over each group of N traces for u in range(0, len(pred_stop), N): pred_lbl[cnt_u] = np.mean(pred_stop[u:u+N]) cnt_u += 1 return pred_lbl
def get_halotypes_for_tree_root(self,trees_dir='./',forests=None,locations=None): if forests is None: forests = load_forests(trees_dir) if locations is None: locations = self.load_locations(trees_dir) treeparser = TreesDir(trees_dir) p = treeparser._get_ParseFields([]) tree_types = dict() ## This is an embarrassingly parallel loop for tree_root_id,(offset,filename) in locations.items(): tree_filename = generate_filename(trees_dir+'/'+filename) if tree_filename is None: raise IOError('Could not find tree file'.format(trees_dir+'/'+filename)) with opener(tree_filename,'rb') as f: f.seek(offset) ## now read the first output for this tree root line = f.next() try: X = p.pack(p.parse_line(line)) tree_types[tree_root_id] = 1 if X['pid'] == -1 else 0 except: Tracer()() # nforests = len(forests) isolated_forest = [] for root_id,tree_ids in forests.items(): try: num_fofs_max_scale = sum(tree_types[tree_id] for tree_id in tree_ids) isolated_forest.append(False if (num_fofs_max_scale > 1) else True) except: Tracer()() return tree_types,np.array(isolated_forest,dtype=bool)
def updatecontstat(self, t0 = 36*3600, t1 = 144*3600): try: cstat = self.cont_stat[0] except: cstat = self.cont_stat if np.size(np.shape(self.onTime))>1: onTs = np.min(np.squeeze(self.onTime)) offTs = np.max(np.squeeze(self.offTime)) else: onTs = np.min(self.onTime) offTs = np.max(self.offTime) try: tcheck = onTs <= t0 and offTs >= t1 except: Tracer()() try: if not tcheck and cstat == 1: # change this cell to NOT continuous f1 = h5py.File(self.HDF5_tag[0], 'r+') data = f1['neurons/neuron_'+str(self.HDF5_tag[1])+'/cont_stat'] data[...] = float(0) f1.close() print('Changed this cell from continuous to not.') elif tcheck and cstat == 0: # change this cell to continuous f1 = h5py.File(self.HDF5_tag[0], 'r+') data = f1['neurons/neuron_'+str(self.HDF5_tag[1])+'/cont_stat'] data[...] = float(1) f1.close() print('Changed this cell to continuous.') else: print('Continuous status stays as {}.'.format(cstat)) except: print('Caught at 535') Tracer()()
def fillboard(board, topleft, mines_left, rowrem, colrem): col = len(board[0]) row = len(board) if min(rowrem, colrem) == 2 and mines_left > 0: return False if rowrem == 1 or colrem == 1: return False else: reduct = max(rowrem, colrem) if reduct == colrem: tmp = min(col - 2, mines_left + topleft[1]) board[topleft[0]] = ['*'] * tmp + ['.'] * (col - tmp) mines_left -= tmp - topleft[1] # Tracer()() if mines_left > 0: if topleft[0] + 1 == row: return False if topleft[0] + 3 == row: return False board[topleft[0] + 1][topleft[1]] = '*' mines_left -= 1 else: tmp = min(row - 2, mines_left + topleft[0]) for i in xrange(tmp): board[i][topleft[1]] = '*' mines_left -= tmp - topleft[0] if mines_left > 0: if topleft[1] + 1 == col: return False if topleft[1] + 3 == col: return False board[topleft[0]][topleft[1] + 1] = '*' mines_left -= 1 if mines_left > 0: Tracer()() boola = False boolb = False boolc = False if row - 2 >= 0 and board[row - 2][col - 1] == '*': boola = True if col - 2 >= 0 and board[row - 1][col - 2] == '*': boolb = True if col - 2 >= 0 and row - 2 >= 0 and board[row - 2][col - 2] == '*': boolc = True if boola and boolb and boolc: board[row - 1][col - 1] = 'c' return True elif boola or boolb or boolc: return False board[row - 1][col - 1] = 'c' return True
def showResults(data, schedule, results): players_np = np.array(data) scores_np = np.array(results['scores'][0]) results_selection = results['x'] days = results['days'][0][0] start_index = results['start_index'][0][0] curr_team = players_np[np.nonzero(results['curr_team'][0])].tolist() curr_team_mask = results['curr_team'][0] for index in xrange(days): team_players = players_np[np.nonzero( results_selection[index])].tolist() team_player_scores = scores_np[np.nonzero( results_selection[index])].tolist() if index == 0: coming_in = [ int(x < 0) for x in [ x - y for x, y in zip(curr_team_mask, results_selection[index]) ] ] going_out = [ int(x > 0) for x in [ x - y for x, y in zip(curr_team_mask, results_selection[index]) ] ] else: going_out = [ int(x < 0) for x in [ x - y for x, y in zip(results_selection[index], results_selection[index - 1]) ] ] coming_in = [ int(x > 0) for x in [ x - y for x, y in zip(results_selection[index], results_selection[index - 1]) ] ] print "These players leaving:\n {0}".format( players_np[np.nonzero(going_out)].tolist()) print "These players coming in:\n {0}".format( players_np[np.nonzero(coming_in)].tolist()) print schedule['schedule'][index + start_index] print team_player_scores print team_players # Tracer()() print "\n\n\n" Tracer()()
def main(): global hmm Tracer()() pwd = os.getcwd() basepath = pwd + "/corpora/" # Name of text files in /corpora/ directory paths = ("ai.txt", "mahabharat.txt") paths = tuple([basepath + path for path in paths]) texts = [readAndProcess(path) for path in paths] N = 10 hmm = LetterHMM(texts, N) Tracer()() while True: sample = hmm.randomwalk(2000) # print sample # print "\n" obj = re.findall("[A-Z][A-Za-z:\- ,;]{19,}\.", sample) if len(obj) < 1: continue for sentence in obj: sentence.translate(string.maketrans("", ""), string.punctuation).lower() counts = [0, 0, 0, 0] for word in sentence.split(): if word in hmm.word_distros[0] and word in hmm.word_distros[1]: counts[2] += 1 elif word in hmm.word_distros[0]: counts[0] += 1 elif word in hmm.word_distros[1]: counts[1] += 1 else: counts[3] += 1 if counts[0] >= 2 and counts[1] >= 2: print sentence print counts print "\n" time.sleep(1)
def main(): # ImageNetData needs path to meta.mat, path to images and path to annotations. # The images are assumed to be in folders according to their synsets names #imnet = ImageNetData("ILSVRC2011_devkit-2.0/data", "unpacked", "annotation") imnet = ImageNetData( "/nfs3group/chlgrp/datasets/ILSVRC2010/devkit-1.0/data", bow_path="/nfs3group/chlgrp/datasets/ILSVRC2010") features, labels = imnet.load_bow() features_val, labels_val = imnet.load_bow('val') from IPython.core.debugger import Tracer tracer = Tracer(colors="LightBG") tracer()
def forward(self, x): x = self.pool(F.leaky_relu(self.batchnorm1(self.conv1(x)))) x = self.pool(F.leaky_relu(self.batchnorm2(self.conv2(x)))) x = self.pool(F.leaky_relu(self.batchnorm3(self.conv3(x)))) x = self.pool(F.leaky_relu(self.batchnorm4(self.conv4(x)))) x = self.batchnorm5(self.conv5(x)) x = x.contiguous().view(self.batch_size, -1) x = self.classifier(x) x = torch.sigmoid(x) x = x.contiguous().view(self.batch_size, -1, self.cell_size, self.cell_size) x = x.permute(0,2,3,1) if math.isnan(torch.sum(x).data.cpu().numpy()): Tracer()() return x
def setbp(): try: try: from traitlets.config.configurable import MultipleInstanceError except ImportError: from IPython.config.configurable import MultipleInstanceError try: import ipdb return ipdb.set_trace except (ImportError, MultipleInstanceError): from IPython.core.debugger import Tracer return Tracer() except Exception: import pdb return pdb.set_trace
def train_step(self, data, **kwargs): # torch.autograd.set_detect_anomaly(True) loss, data_dict, r = self.model(data['X'], actions=data['a'].cuda().float(), pretrain=kwargs['pretrain']) self.optimizer.zero_grad() torch.mean(-1. * loss).backward() if self.clip_gradient: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.clip_gradient_value) for n, p in self.model.named_parameters(): if p.grad is not None: # print(f'{n}: {p.grad.max()} {p.grad.min()} {p.grad.mean()}') if not torch.isfinite(p.grad.mean()): from IPython.core.debugger import Tracer Tracer()() self.optimizer.step() return data_dict
def main(): team = 'BOS' games = get_season_games_for_team(season='2015-16', team=team) games = sorted(games, key=lambda x: x.date) assert_ordered_games(games) win_points = [0] wins = 0 for g in games: wins = update_wins(wins, team, g) win_points.append(wins) plt.scatter(x=[i for i in range(0, len(win_points))], y=win_points) plt.show() Tracer()()
def check_idempotent_create(expr): """Check that an expression is 'idempotent'""" from qalgebra.core.abstract_algebra import Expression print("*** CHECKING IDEMPOTENCY of %s" % expr) if isinstance(expr, Expression): new_expr = expr.create(*expr.args, **expr.kwargs) if new_expr != expr: # noinspection PyPackageRequirements from IPython.core.debugger import Tracer Tracer()() print(expr) print(new_expr) print("*** IDEMPOTENCY OK")