def get_predictions(self, model, weights_path): """ Runs the prediction. """ self.model = model self.weights_path = Path(weights_path) weights_conf = self._load_weights() out_folder = self.output_dir / self._make_basename() / get_timestamp() self.logger.info('Results in:\n > {}'.format(out_folder)) if out_folder.exists(): self.logger.warning('Directory exists, might overwrite files') else: out_folder.mkdir(parents=True) if weights_conf: yaml.dump(weights_conf, (out_folder / 'weights_config.yml').open('w')) # Predict and store for img_path in self.img_ls: output_path = out_folder / img_path.name self.logger.info('Processing file\n > {}'.format(img_path)) start = time() sr_img = self._forward_pass(img_path) end = time() self.logger.info('Elapsed time: {}s'.format(end - start)) self.logger.info('Result in: {}'.format(output_path)) imageio.imwrite(output_path, sr_img)
def get_session_id(self, basename): """ Returns unique session identifier. """ time_stamp = get_timestamp() if basename: session_id = '{b}_{ts}'.format(b=basename, ts=time_stamp) else: session_id = time_stamp return session_id