def main(options): """ Main routine to compute vibrational modes and frequencies (and optionally also the corresponding electron-vibration couplings) Parameters ---------- options : an ``options`` instance """ Log.CreatePipeOutput(options) Log.PrintMainHeader(options) # Determine SIESTA input fdf files in FCruns fdf = glob.glob(options.FCwildcard + '/' + options.fdf) print('Phonons.Analyze: This run uses') FCfirst, FClast = min(options.DynamicAtoms), max(options.DynamicAtoms) print(' ... FCfirst = %4i, FClast = %4i, Dynamic atoms = %4i' % (FCfirst, FClast, len(options.DynamicAtoms))) print(' ... DeviceFirst = %4i, DeviceLast = %4i, Device atoms = %4i' % (options.DeviceFirst, options.DeviceLast, options.DeviceLast - options.DeviceFirst + 1)) print(' ... PBC First = %4i, PBC Last = %4i, Device atoms = %4i' % (options.PBCFirst, options.PBCLast, options.PBCLast - options.PBCFirst + 1)) print('\nSetting array type to %s\n' % options.atype) # Build Dynamical Matrix DM = DynamicalMatrix(fdf, options.DynamicAtoms) DM.SetMasses(options.Isotopes) # Compute modes DM.ComputePhononModes(DM.mean) # Compute e-ph coupling if options.CalcCoupl: DM.PrepareGradients(options.onlySdir, options.kpoint, options.DeviceFirst, options.DeviceLast, options.AbsEref, options.atype) DM.ComputeEPHcouplings(options.PBCFirst, options.PBCLast, options.EPHAtoms, options.Restart, options.CheckPointNetCDF, WriteGradients=options.WriteGradients) # Write data to files DM.WriteOutput(options.DestDir + '/Output', options.SinglePrec, options.GammaPoint) Log.PrintMainFooter(options) return DM.h0, DM.s0, DM.hw, DM.heph else: DM.WriteOutput(options.DestDir + '/Output', options.SinglePrec, options.GammaPoint) Log.PrintMainFooter(options) return DM.hw
def main(options): """ Main routine to compute inelastic transport characteristics (dI/dV, d2I/dV2, IETS etc) Parameters ---------- options : an ``options`` instance """ Log.CreatePipeOutput(options) VC.OptionsCheck(options) Log.PrintMainHeader(options) options.XV = '%s/%s.XV'%(options.head, options.systemlabel) options.geom = MG.Geom(options.XV, BufferAtoms=options.buffer) # Voltage fraction over left-center interface VfracL = options.VfracL # default is 0.5 print 'Inelastica: Voltage fraction over left-center interface: VfracL =', VfracL # Set up electrodes and device Greens function elecL = NEGF.ElectrodeSelfEnergy(options.fnL, options.NA1L, options.NA2L, options.voltage*VfracL) elecL.scaling = options.scaleSigL elecL.semiinf = options.semiinfL elecR = NEGF.ElectrodeSelfEnergy(options.fnR, options.NA1R, options.NA2R, options.voltage*(VfracL-1.)) elecR.scaling = options.scaleSigR elecR.semiinf = options.semiinfR # Read phonons NCfile = NC4.Dataset(options.PhononNetCDF, 'r') print 'Inelastica: Reading ', options.PhononNetCDF hw = NCfile.variables['hw'][:] # Work with GFs etc for positive (V>0: \mu_L>\mu_R) and negative (V<0: \mu_L<\mu_R) bias voltages GFp = NEGF.GF(options.TSHS, elecL, elecR, Bulk=options.UseBulk, DeviceAtoms=options.DeviceAtoms, BufferAtoms=options.buffer) # Prepare lists for various trace factors #GF.dGnout = [] #GF.dGnin = [] GFp.P1T = N.zeros(len(hw), N.float) # M.A.M.A (total e-h damping) GFp.P2T = N.zeros(len(hw), N.float) # M.AL.M.AR (emission) GFp.ehDampL = N.zeros(len(hw), N.float) # M.AL.M.AL (L e-h damping) GFp.ehDampR = N.zeros(len(hw), N.float) # M.AR.M.AR (R e-h damping) GFp.nHT = N.zeros(len(hw), N.float) # non-Hilbert/Isym factor GFp.HT = N.zeros(len(hw), N.float) # Hilbert/Iasym factor GFp.dIel = N.zeros(len(hw), N.float) GFp.dIinel = N.zeros(len(hw), N.float) GFp.dSel = N.zeros(len(hw), N.float) GFp.dSinel = N.zeros(len(hw), N.float) # GFm = NEGF.GF(options.TSHS, elecL, elecR, Bulk=options.UseBulk, DeviceAtoms=options.DeviceAtoms, BufferAtoms=options.buffer) GFm.P1T = N.zeros(len(hw), N.float) # M.A.M.A (total e-h damping) GFm.P2T = N.zeros(len(hw), N.float) # M.AL.M.AR (emission) GFm.ehDampL = N.zeros(len(hw), N.float) # M.AL.M.AL (L e-h damping) GFm.ehDampR = N.zeros(len(hw), N.float) # M.AR.M.AR (R e-h damping) GFm.nHT = N.zeros(len(hw), N.float) # non-Hilbert/Isym factor GFm.HT = N.zeros(len(hw), N.float) # Hilbert/Iasym factor GFm.dIel = N.zeros(len(hw), N.float) GFm.dIinel = N.zeros(len(hw), N.float) GFm.dSel = N.zeros(len(hw), N.float) GFm.dSinel = N.zeros(len(hw), N.float) # Calculate transmission at Fermi level GFp.calcGF(options.energy+options.eta*1.0j, options.kpoint[0:2], ispin=options.iSpin, etaLead=options.etaLead, useSigNCfiles=options.signc, SpectralCutoff=options.SpectralCutoff) L = options.bufferL # Pad lasto with zeroes to enable basis generation... lasto = N.zeros((GFp.HS.nua+L+1,), N.int) lasto[L:] = GFp.HS.lasto basis = SIO.BuildBasis(options.fn, options.DeviceAtoms[0]+L, options.DeviceAtoms[1]+L, lasto) basis.ii -= L TeF = MM.trace(GFp.TT).real GFp.TeF = TeF GFm.TeF = TeF # Check consistency of PHrun vs TSrun inputs IntegrityCheck(options, GFp, basis, NCfile) # Calculate trace factors one mode at a time print 'Inelastica: LOEscale =', options.LOEscale if options.LOEscale==0.0: # LOEscale=0.0 => Original LOE-WBA method, PRB 72, 201101(R) (2005) [cond-mat/0505473]. GFp.calcGF(options.energy+options.eta*1.0j, options.kpoint[0:2], ispin=options.iSpin, etaLead=options.etaLead, useSigNCfiles=options.signc, SpectralCutoff=options.SpectralCutoff) GFm.calcGF(options.energy+options.eta*1.0j, options.kpoint[0:2], ispin=options.iSpin, etaLead=options.etaLead, useSigNCfiles=options.signc, SpectralCutoff=options.SpectralCutoff) for ihw in (hw>options.modeCutoff).nonzero()[0]: calcTraces(options, GFp, GFm, basis, NCfile, ihw) calcTraces(options, GFm, GFp, basis, NCfile, ihw) writeFGRrates(options, GFp, hw, NCfile) else: # LOEscale=1.0 => Generalized LOE, PRB 89, 081405(R) (2014) [arXiv:1312.7625] for ihw in (hw>options.modeCutoff).nonzero()[0]: GFp.calcGF(options.energy+hw[ihw]*options.LOEscale*VfracL+options.eta*1.0j, options.kpoint[0:2], ispin=options.iSpin, etaLead=options.etaLead, useSigNCfiles=options.signc, SpectralCutoff=options.SpectralCutoff) GFm.calcGF(options.energy+hw[ihw]*options.LOEscale*(VfracL-1.)+options.eta*1.0j, options.kpoint[0:2], ispin=options.iSpin, etaLead=options.etaLead, useSigNCfiles=options.signc, SpectralCutoff=options.SpectralCutoff) calcTraces(options, GFp, GFm, basis, NCfile, ihw) if VfracL!=0.5: GFp.calcGF(options.energy-hw[ihw]*options.LOEscale*(VfracL-1.)+options.eta*1.0j, options.kpoint[0:2], ispin=options.iSpin, etaLead=options.etaLead, useSigNCfiles=options.signc, SpectralCutoff=options.SpectralCutoff) GFm.calcGF(options.energy-hw[ihw]*options.LOEscale*VfracL+options.eta*1.0j, options.kpoint[0:2], ispin=options.iSpin, etaLead=options.etaLead, useSigNCfiles=options.signc, SpectralCutoff=options.SpectralCutoff) calcTraces(options, GFm, GFp, basis, NCfile, ihw) # Multiply traces with voltage-dependent functions data = calcIETS(options, GFp, GFm, basis, hw) NCfile.close() NEGF.SavedSig.close() Log.PrintMainFooter(options) return data
def main(options): """ Main routine to compute eigenchannel scattering states Parameters ---------- options : an ``options`` instance """ Log.CreatePipeOutput(options) VC.OptionsCheck(options) Log.PrintMainHeader(options) # Read geometry XV = '%s/%s.XV' % (options.head, options.systemlabel) geom = MG.Geom(XV, BufferAtoms=options.buffer) # Set up device Greens function elecL = NEGF.ElectrodeSelfEnergy(options.fnL, options.NA1L, options.NA2L, options.voltage / 2.) elecL.scaling = options.scaleSigL elecL.semiinf = options.semiinfL elecR = NEGF.ElectrodeSelfEnergy(options.fnR, options.NA1R, options.NA2R, -options.voltage / 2.) elecR.scaling = options.scaleSigR elecR.semiinf = options.semiinfR DevGF = NEGF.GF(options.TSHS, elecL, elecR, Bulk=options.UseBulk, DeviceAtoms=options.DeviceAtoms, BufferAtoms=options.buffer) DevGF.calcGF(options.energy + options.eta * 1.0j, options.kpoint[0:2], ispin=options.iSpin, etaLead=options.etaLead, useSigNCfiles=options.signc, SpectralCutoff=options.SpectralCutoff) NEGF.SavedSig.close() # Make sure saved Sigma is written to file # Transmission print('Transmission Ttot(%.4feV) = %.16f' % (options.energy, N.trace(DevGF.TT).real)) # Build basis options.nspin = DevGF.HS.nspin L = options.bufferL # Pad lasto with zeroes to enable basis generation... lasto = N.zeros((DevGF.HS.nua + L + 1, ), N.int) lasto[L:] = DevGF.HS.lasto basis = SIO.BuildBasis(options.fn, options.DeviceAtoms[0] + L, options.DeviceAtoms[1] + L, lasto) basis.ii -= L # Calculate Eigenchannels DevGF.calcEigChan(options.numchan) # Compute bond currents? if options.kpoint[0] != 0.0 or options.kpoint[1] != 0.0: print( 'Warning: The current implementation of bond currents is only valid for the Gamma point (should be easy to fix)' ) BC = False else: BC = True # Eigenchannels from left ECleft = DevGF.ECleft for jj in range(options.numchan): options.iSide, options.iChan = 0, jj + 1 writeWavefunction(options, geom, basis, ECleft[jj]) if BC: Curr = calcCurrent(options, basis, DevGF.H, ECleft[jj]) writeCurrent(options, geom, Curr) # Calculate eigenchannels from right if options.bothsides: ECright = DevGF.ECright for jj in range(options.numchan): options.iSide, options.iChan = 1, jj + 1 writeWavefunction(options, geom, basis, ECright[jj]) if BC: Curr = calcCurrent(options, basis, DevGF.H, ECright[jj]) writeCurrent(options, geom, Curr) # Calculate total "bond currents" if BC: Curr = -calcCurrent(options, basis, DevGF.H, DevGF.AL) options.iChan, options.iSide = 0, 0 writeCurrent(options, geom, Curr) Curr = -calcCurrent(options, basis, DevGF.H, DevGF.AR) options.iSide = 1 writeCurrent(options, geom, Curr) # Calculate eigenstates of device Hamiltonian (MPSH) if options.MolStates > 0.0: try: import scipy.linalg as SLA ev, es = SLA.eigh(DevGF.H, DevGF.S) print( 'EigenChannels: Eigenvalues (in eV) of computed molecular eigenstates:' ) print(ev) # Write eigenvalues to file fn = options.DestDir + '/' + options.systemlabel + '.EIGVAL' print('EigenChannels: Writing', fn) fnfile = open(fn, 'w') fnfile.write('# Device region = [%i,%i], units in eV\n' % (options.DeviceFirst, options.DeviceLast)) for i, val in enumerate(ev): fnfile.write('%i %.8f\n' % (i, val)) fnfile.close() # Compute selected eigenstates for ii, val in enumerate(ev): if N.abs(val) < options.MolStates: fn = options.DestDir + '/' + options.systemlabel + '.S%.3i.E%.3f' % ( ii, val) writeWavefunction(options, geom, basis, es[:, ii], fn=fn) except: print( 'You need to install scipy to solve the generalized eigenvalue problem' ) print('for the molecular eigenstates in the nonorthogonal basis') Log.PrintMainFooter(options) return DevGF
def main(options): Log.CreatePipeOutput(options) #VC.OptionsCheck(options) Log.PrintMainHeader(options) try: fdf = glob.glob(options.onlyTSdir + '/RUN.fdf') TSrun = True except: fdf = glob.glob(options.FCwildcard + '/RUN.fdf') # This should be made an input flag TSrun = False SCDM = Supercell_DynamicalMatrix(fdf, TSrun) # Write high-symmetry path WritePath(options.DestDir + '/symmetry-path', SCDM.Sym.path, options.steps) # Write mesh k1, k2, k3 = ast.literal_eval(options.mesh) rvec = 2 * N.pi * N.array([SCDM.Sym.b1, SCDM.Sym.b2, SCDM.Sym.b3]) import Inelastica.physics.mesh as Kmesh # Full mesh kmesh = Kmesh.kmesh(2**k1, 2**k2, 2**k3, meshtype=['LIN', 'LIN', 'LIN'], invsymmetry=False) WriteKpoints(options.DestDir + '/mesh_%ix%ix%i' % tuple(kmesh.Nk), N.dot(kmesh.k, rvec)) # Mesh reduced by inversion symmetry kmesh = Kmesh.kmesh(2**k1, 2**k2, 2**k3, meshtype=['LIN', 'LIN', 'LIN'], invsymmetry=True) WriteKpoints(options.DestDir + '/mesh_%ix%ix%i_invsym' % tuple(kmesh.Nk), N.dot(kmesh.k, rvec)) # Evaluate electron k-points if options.kfile: # Prepare Hamiltonian etc in Gamma for whole supercell natoms = SIO.GetFDFlineWithDefault(fdf[0], 'NumberOfAtoms', int, -1, 'Error') SCDM.PrepareGradients(options.onlySdir, N.array([0., 0., 0.]), 1, natoms, AbsEref=False, atype=N.complex, TSrun=TSrun) SCDM.nao = SCDM.h0.shape[-1] SCDM.FirstOrb = SCDM.OrbIndx[0][0] # First atom = 1 SCDM.LastOrb = SCDM.OrbIndx[SCDM.Sym.basis.NN - 1][1] # Last atom = Sym.NN SCDM.rednao = SCDM.LastOrb + 1 - SCDM.FirstOrb # Read kpoints kpts, dk, klabels, kticks = ReadKpoints(options.kfile) if klabels: # Only write ascii if labels exist WriteKpoints(options.DestDir + '/kpoints', kpts, klabels) # Prepare netcdf ncfn = options.DestDir + '/Electrons.nc' ncf = NC4.Dataset(ncfn, 'w') # Grid ncf.createDimension('gridpts', len(kpts)) ncf.createDimension('vector', 3) grid = ncf.createVariable('grid', 'd', ('gridpts', 'vector')) grid[:] = kpts grid.units = '1/Angstrom' # Geometry ncf.createDimension('atoms', SCDM.Sym.basis.NN) xyz = ncf.createVariable('xyz', 'd', ('atoms', 'vector')) xyz[:] = SCDM.Sym.basis.xyz xyz.units = 'Angstrom' pbc = ncf.createVariable('pbc', 'd', ('vector', 'vector')) pbc.units = 'Angstrom' pbc[:] = [SCDM.Sym.a1, SCDM.Sym.a2, SCDM.Sym.a3] rvec1 = ncf.createVariable('rvec', 'd', ('vector', 'vector')) rvec1.units = '1/Angstrom (incl. factor 2pi)' rvec1[:] = rvec ncf.sync() # Loop over kpoints for i, k in enumerate(kpts): if i < 100: # Print only for the first 100 points ev, evec = SCDM.ComputeElectronStates(k, verbose=True, TSrun=TSrun) else: ev, evec = SCDM.ComputeElectronStates(k, verbose=False, TSrun=TSrun) # otherwise something simple if i % 100 == 0: print('%i out of %i k-points computed' % (i, len(kpts))) if i == 0: ncf.createDimension('nspin', SCDM.nspin) ncf.createDimension('orbs', SCDM.rednao) if options.nbands and options.nbands < SCDM.rednao: nbands = options.nbands else: nbands = SCDM.rednao ncf.createDimension('bands', nbands) evals = ncf.createVariable('eigenvalues', 'd', ('gridpts', 'nspin', 'bands')) evals.units = 'eV' evecsRe = ncf.createVariable( 'eigenvectors.re', 'd', ('gridpts', 'nspin', 'orbs', 'bands')) evecsIm = ncf.createVariable( 'eigenvectors.im', 'd', ('gridpts', 'nspin', 'orbs', 'bands')) # Check eigenvectors print('SupercellPhonons: Checking eigenvectors at', k) for j in range(SCDM.nspin): ev2 = N.diagonal( MM.mm(MM.dagger(evec[j]), SCDM.h0_k[j], evec[j])) print(' ... spin %i: Allclose=' % j, N.allclose(ev[j], ev2, atol=1e-5, rtol=1e-3)) ncf.sync() # Write to NetCDF evals[i, :] = ev[:, :nbands] evecsRe[i, :] = evec[:, :, :nbands].real evecsIm[i, :] = evec[:, :, :nbands].imag ncf.sync() # Include basis orbitals in netcdf file if SCDM.Sym.basis.NN == len(SCDM.OrbIndx): lasto = N.zeros(SCDM.Sym.basis.NN + 1, N.float) lasto[:SCDM.Sym.basis.NN] = SCDM.OrbIndx[:SCDM.Sym.basis.NN, 0] lasto[SCDM.Sym.basis.NN] = SCDM.OrbIndx[SCDM.Sym.basis.NN - 1, 1] + 1 else: lasto = SCDM.OrbIndx[:SCDM.Sym.basis.NN + 1, 0] orbbasis = SIO.BuildBasis(fdf[0], 1, SCDM.Sym.basis.NN, lasto) # Note that the above basis is for the geometry with an atom FC-moved in z. #print dir(orbbasis) #print orbbasis.xyz # Hence, this is not the correct geometry of the basis atoms! center = ncf.createVariable('orbcenter', 'i', ('orbs', )) center[:] = N.array(orbbasis.ii - 1, dtype='int32') center.description = 'Atom index (counting from 0) of the orbital center' nn = ncf.createVariable('N', 'i', ('orbs', )) nn[:] = N.array(orbbasis.N, dtype='int32') ll = ncf.createVariable('L', 'i', ('orbs', )) ll[:] = N.array(orbbasis.L, dtype='int32') mm = ncf.createVariable('M', 'i', ('orbs', )) mm[:] = N.array(orbbasis.M, dtype='int32') # Cutoff radius and delta Rc = ncf.createVariable('Rc', 'd', ('orbs', )) Rc[:] = orbbasis.coff Rc.units = 'Angstrom' delta = ncf.createVariable('delta', 'd', ('orbs', )) delta[:] = orbbasis.delta delta.units = 'Angstrom' # Radial components of the orbitals ntb = len(orbbasis.orb[0]) ncf.createDimension('ntb', ntb) rii = ncf.createVariable('rii', 'd', ('orbs', 'ntb')) rii[:] = N.outer(orbbasis.delta, N.arange(ntb)) rii.units = 'Angstrom' radialfct = ncf.createVariable('radialfct', 'd', ('orbs', 'ntb')) radialfct[:] = orbbasis.orb # Sort eigenvalues to connect crossing bands? if options.sorting: for i in range(SCDM.nspin): evals[:, i, :] = SortBands(evals[:, i, :]) # Produce nice plots if labels exist if klabels: if SCDM.nspin == 1: PlotElectronBands(options.DestDir + '/Electrons.agr', dk, evals[:, 0, :], kticks) elif SCDM.nspin == 2: PlotElectronBands(options.DestDir + '/Electrons.UP.agr', dk, evals[:, 0, :], kticks) PlotElectronBands(options.DestDir + '/Electrons.DOWN.agr', dk, evals[:, 1, :], kticks) ncf.close() if TSrun: # only electronic calculation # Ugly hack to get my old code to work again. -Magnus if options.FermiSurface == True: from . import BandStruct as BS options.fdfFile = 'RUN.fdf' options.eMin, options.eMax = -10, 10 options.NNk = 101 BS.general = options BS.main() return SCDM.Sym.path # Compute phonon eigenvalues if options.qfile: SCDM.SymmetrizeFC(options.radius) SCDM.SetMasses() qpts, dq, qlabels, qticks = ReadKpoints(options.qfile) if qlabels: # Only write ascii if labels exist WriteKpoints(options.DestDir + '/qpoints', qpts, qlabels) # Prepare netcdf ncfn = options.DestDir + '/Phonons.nc' ncf = NC4.Dataset(ncfn, 'w') # Grid ncf.createDimension('gridpts', len(qpts)) ncf.createDimension('vector', 3) grid = ncf.createVariable('grid', 'd', ('gridpts', 'vector')) grid[:] = qpts grid.units = '1/Angstrom' # Geometry ncf.createDimension('atoms', SCDM.Sym.basis.NN) xyz = ncf.createVariable('xyz', 'd', ('atoms', 'vector')) xyz[:] = SCDM.Sym.basis.xyz xyz.units = 'Angstrom' pbc = ncf.createVariable('pbc', 'd', ('vector', 'vector')) pbc.units = 'Angstrom' pbc[:] = [SCDM.Sym.a1, SCDM.Sym.a2, SCDM.Sym.a3] rvec1 = ncf.createVariable('rvec', 'd', ('vector', 'vector')) rvec1.units = '1/Angstrom (incl. factor 2pi)' rvec1[:] = rvec ncf.sync() # Loop over q for i, q in enumerate(qpts): if i < 100: # Print only for the first 100 points hw, U = SCDM.ComputePhononModes_q(q, verbose=True) else: hw, U = SCDM.ComputePhononModes_q(q, verbose=False) # otherwise something simple if i % 100 == 0: print('%i out of %i q-points computed' % (i, len(qpts))) if i == 0: ncf.createDimension('bands', len(hw)) ncf.createDimension('displ', len(hw)) evals = ncf.createVariable('eigenvalues', 'd', ('gridpts', 'bands')) evals.units = 'eV' evecsRe = ncf.createVariable('eigenvectors.re', 'd', ('gridpts', 'bands', 'displ')) evecsIm = ncf.createVariable('eigenvectors.im', 'd', ('gridpts', 'bands', 'displ')) # Check eigenvectors print('SupercellPhonons.Checking eigenvectors at', q) tmp = MM.mm(N.conjugate(U), SCDM.FCtilde, N.transpose(U)) const = PC.hbar2SI * (1e20 / (PC.eV2Joule * PC.amu2kg))**0.5 hw2 = const * N.diagonal(tmp)**0.5 # Units in eV print(' ... Allclose=', N.allclose(hw, N.absolute(hw2), atol=1e-5, rtol=1e-3)) ncf.sync() # Write only AXSF files for the first q-point PH.WriteAXSFFiles(options.DestDir + '/q%i_re.axsf' % i, SCDM.Sym.basis.xyz, SCDM.Sym.basis.anr, hw, U.real, 1, SCDM.Sym.basis.NN) PH.WriteAXSFFiles(options.DestDir + '/q%i_im.axsf' % i, SCDM.Sym.basis.xyz, SCDM.Sym.basis.anr, hw, U.imag, 1, SCDM.Sym.basis.NN) PH.WriteFreqFile(options.DestDir + '/q%i.freq' % i, hw) evals[i] = hw evecsRe[i] = U.real evecsIm[i] = U.imag ncf.sync() # Sort eigenvalues to connect crossing bands? if options.sorting: evals = SortBands(evals) # Produce nice plots if labels exist if qlabels: PlotPhononBands(options.DestDir + '/Phonons.agr', dq, N.array(evals[:]), qticks) ncf.close() # Compute e-ph couplings if options.kfile and options.qfile: SCDM.ReadGradients() ncf = NC4.Dataset(options.DestDir + '/EPH.nc', 'w') ncf.createDimension('kpts', len(kpts)) ncf.createDimension('qpts', len(qpts)) ncf.createDimension('modes', len(hw)) ncf.createDimension('nspin', SCDM.nspin) ncf.createDimension('bands', SCDM.rednao) ncf.createDimension('vector', 3) kgrid = ncf.createVariable('kpts', 'd', ('kpts', 'vector')) kgrid[:] = kpts qgrid = ncf.createVariable('qpts', 'd', ('qpts', 'vector')) qgrid[:] = qpts evalfkq = ncf.createVariable('evalfkq', 'd', ('kpts', 'qpts', 'nspin', 'bands')) # First (second) band index n (n') is the initial (final) state, i.e., # Mkq(k,q,mode,spin,n,n') := < n',k+q | dV_q(mode) | n,k > MkqAbs = ncf.createVariable( 'Mkqabs', 'd', ('kpts', 'qpts', 'modes', 'nspin', 'bands', 'bands')) GkqAbs = ncf.createVariable( 'Gkqabs', 'd', ('kpts', 'qpts', 'modes', 'nspin', 'bands', 'bands')) ncf.sync() # Loop over k-points for i, k in enumerate(kpts): kpts[i] = k # Compute initial electronic states evi, eveci = SCDM.ComputeElectronStates(k, verbose=True) # Loop over q-points for j, q in enumerate(qpts): # Compute phonon modes hw, U = SCDM.ComputePhononModes_q(q, verbose=True) # Compute final electronic states evf, evecf = SCDM.ComputeElectronStates(k + q, verbose=True) evalfkq[i, j, :] = evf # Compute electron-phonon couplings m, g = SCDM.ComputeEPHcouplings_kq( k, q) # (modes,nspin,bands,bands) # Data to file # M (modes,spin,i,l) = m(modes,k,j) init(i,j) final(k,l) # 0 1 2 0,1 0 1 # ^-------^ # ^----------------------^ for ispin in range(SCDM.nspin): evecfd = MM.dagger(evecf[ispin]) # (bands,bands) M = N.tensordot(N.tensordot(m[:, ispin], eveci[ispin], axes=[2, 0]), evecfd, axes=[1, 1]) G = N.tensordot(N.tensordot(g[:, ispin], eveci[ispin], axes=[2, 0]), evecfd, axes=[1, 1]) MkqAbs[i, j, :, ispin] = N.absolute(M) GkqAbs[i, j, :, ispin] = N.absolute(G) ncf.sync() ncf.close() return SCDM.Sym.path
def main(options): """ Main routine to compute elastic transmission probabilities etc. Parameters ---------- options : an ``options`` instance """ Log.CreatePipeOutput(options) VC.OptionsCheck(options) Log.PrintMainHeader(options) # K-points if options.Gk1 > 1: Nk1, t1 = options.Gk1, 'GK' else: Nk1, t1 = options.Nk1, 'LIN' if options.Gk2 > 1: Nk2, t2 = options.Gk2, 'GK' else: Nk2, t2 = options.Nk2, 'LIN' # Generate full k-mesh: mesh = Kmesh.kmesh(Nk1, Nk2, Nk3=1, meshtype=[t1, t2, 'LIN'], invsymmetry=not options.skipsymmetry) mesh.mesh2file( '%s/%s.%ix%i.mesh' % (options.DestDir, options.systemlabel, mesh.Nk[0], mesh.Nk[1])) # Setup self-energies and device GF elecL = NEGF.ElectrodeSelfEnergy(options.fnL, options.NA1L, options.NA2L, options.voltage / 2.) elecL.scaling = options.scaleSigL elecL.semiinf = options.semiinfL elecR = NEGF.ElectrodeSelfEnergy(options.fnR, options.NA1R, options.NA2R, -options.voltage / 2.) elecR.scaling = options.scaleSigR elecR.semiinf = options.semiinfR DevGF = NEGF.GF(options.TSHS, elecL, elecR, Bulk=options.UseBulk, DeviceAtoms=options.DeviceAtoms, BufferAtoms=options.buffer) nspin = DevGF.HS.nspin # k-sample only self-energies? if options.singlejunction: elecL.mesh = mesh mesh = Kmesh.kmesh(3, 3, 1) if options.dos: DOSL = N.zeros((nspin, len(options.Elist), DevGF.nuo), N.float) DOSR = N.zeros((nspin, len(options.Elist), DevGF.nuo), N.float) # MPSH projections? MPSHL = N.zeros((nspin, len(options.Elist), DevGF.nuo), N.float) MPSHR = N.zeros((nspin, len(options.Elist), DevGF.nuo), N.float) # evaluate eigenstates at Gamma import scipy.linalg as SLA DevGF.setkpoint(N.zeros(2)) ev0, es0 = SLA.eigh(DevGF.H, DevGF.S) print('MPSH eigenvalues:', ev0) #print 'MPSH eigenvector normalizations:',N.diag(MM.mm(MM.dagger(es0),DevGF.S,es0)).real # right # Loop over spin for iSpin in range(nspin): # initialize transmission and shot noise arrays Tkpt = N.zeros((len(options.Elist), mesh.NNk, options.numchan + 1), N.float) SNkpt = N.zeros((len(options.Elist), mesh.NNk, options.numchan + 1), N.float) # prepare output files outFile = options.DestDir + '/%s.%ix%i' % (options.systemlabel, mesh.Nk[0], mesh.Nk[1]) if nspin < 2: thisspinlabel = outFile else: thisspinlabel = outFile + ['.UP', '.DOWN'][iSpin] fo = open(thisspinlabel + '.AVTRANS', 'w') fo.write('# Nk1(%s)=%i Nk2(%s)=%i eta=%.2e etaLead=%.2e\n' % (mesh.type[0], mesh.Nk[0], mesh.type[1], mesh.Nk[1], options.eta, options.etaLead)) fo.write('# E Ttot(E) Ti(E)(i=1-%i) RelErrorTtot(E)\n' % options.numchan) foSN = open(thisspinlabel + '.AVNOISE', 'w') foSN.write('# Nk1(%s)=%i Nk2(%s)=%i eta=%.2e etaLead=%.2e\n' % (mesh.type[0], mesh.Nk[0], mesh.type[1], mesh.Nk[1], options.eta, options.etaLead)) foSN.write('# E SNtot(E) SNi(E)(i=1-%i)\n' % options.numchan) foFF = open(thisspinlabel + '.FANO', 'w') foFF.write('# Nk1(%s)=%i Nk2(%s)=%i eta=%.2e etaLead=%.2e\n' % (mesh.type[0], mesh.Nk[0], mesh.type[1], mesh.Nk[1], options.eta, options.etaLead)) foFF.write('# E Fano factor \n') # Loop over energy for ie, ee in enumerate(options.Elist): Tavg = N.zeros((options.numchan + 1, len(mesh.w)), N.float) SNavg = N.zeros((options.numchan + 1, len(mesh.w)), N.float) AavL = N.zeros((DevGF.nuo, DevGF.nuo), N.complex) AavR = N.zeros((DevGF.nuo, DevGF.nuo), N.complex) # Loops over k-points for ik in range(mesh.NNk): DevGF.calcGF(ee + options.eta * 1.0j, mesh.k[ik, :2], ispin=iSpin, etaLead=options.etaLead, useSigNCfiles=options.signc, SpectralCutoff=options.SpectralCutoff) # Transmission and shot noise T, SN = DevGF.calcTEIG(options.numchan) for iw in range(len(mesh.w)): Tavg[:, iw] += T * mesh.w[iw, ik] SNavg[:, iw] += SN * mesh.w[iw, ik] Tkpt[ie, ik] = T SNkpt[ie, ik] = SN # DOS calculation: if options.dos: if options.SpectralCutoff > 0.0: AavL += mesh.w[0, ik] * MM.mm(DevGF.AL.L, DevGF.AL.R, DevGF.S) AavR += mesh.w[0, ik] * MM.mm(DevGF.AR.L, DevGF.AR.R, DevGF.S) else: AavL += mesh.w[0, ik] * MM.mm(DevGF.AL, DevGF.S) AavR += mesh.w[0, ik] * MM.mm(DevGF.AR, DevGF.S) # Print calculated quantities err = (N.abs(Tavg[0, 0] - Tavg[0, 1]) + N.abs(Tavg[0, 0] - Tavg[0, 2])) / 2 relerr = err / Tavg[0, 0] print('ispin= %i, e= %.4f, Tavg= %.8f, RelErr= %.1e' % (iSpin, ee, Tavg[0, 0], relerr)) transline = '\n%.10f ' % ee noiseline = '\n%.10f ' % ee for ichan in range(options.numchan + 1): if ichan == 0: transline += '%.8e ' % Tavg[ichan, 0] noiseline += '%.8e ' % SNavg[ichan, 0] else: transline += '%.4e ' % Tavg[ichan, 0] noiseline += '%.4e ' % SNavg[ichan, 0] transline += '%.2e ' % relerr fo.write(transline) foSN.write(noiseline) foFF.write('\n%.10f %.8e' % (ee, SNavg[0, 0] / Tavg[0, 0])) # Partial density of states: if options.dos: DOSL[iSpin, ie, :] += N.diag(AavL).real / (2 * N.pi) DOSR[iSpin, ie, :] += N.diag(AavR).real / (2 * N.pi) MPSHL[iSpin, ie, :] += N.diag(MM.mm(MM.dagger(es0), AavL, es0)).real / (2 * N.pi) MPSHR[iSpin, ie, :] += N.diag(MM.mm(MM.dagger(es0), AavR, es0)).real / (2 * N.pi) print('ispin= %i, e= %.4f, DOSL= %.4f, DOSR= %.4f' % (iSpin, ee, N.sum( DOSL[iSpin, ie, :]), N.sum(DOSR[iSpin, ie, :]))) fo.write('\n') fo.close() foSN.write('\n') foSN.close() foFF.write('\n') foFF.close() # Write k-point-resolved transmission fo = open(thisspinlabel + '.TRANS', 'w') for ik in range(mesh.NNk): w = mesh.w[:, ik] fo.write('\n\n# k = %f, %f w = %f %f %f %f' % (mesh.k[ik, 0], mesh.k[ik, 1], w[0], w[1], w[2], w[3])) for ie, ee in enumerate(options.Elist): transline = '\n%.10f ' % ee for ichan in range(options.numchan + 1): if ichan == 0: transline += '%.8e ' % Tkpt[ie, ik, ichan] else: transline += '%.4e ' % Tkpt[ie, ik, ichan] fo.write(transline) fo.write('\n') fo.close() # Write k-point-resolved shot noise fo = open(thisspinlabel + '.NOISE', 'w') for ik in range(mesh.NNk): w = mesh.w[:, ik] fo.write('\n\n# k = %f, %f w = %f %f %f %f' % (mesh.k[ik, 0], mesh.k[ik, 1], w[0], w[1], w[2], w[3])) for ie, ee in enumerate(options.Elist): noiseline = '\n%.10f ' % ee for ichan in range(options.numchan + 1): if ichan == 0: noiseline += '%.8e ' % SNkpt[ie, ik, ichan] else: noiseline += '%.4e ' % SNkpt[ie, ik, ichan] fo.write(noiseline) fo.write('\n') fo.close() # End loop over spin NEGF.SavedSig.close() # Make sure saved Sigma is written to file if options.dos: # Read basis L = options.bufferL # Pad lasto with zeroes to enable basis generation... lasto = N.zeros((DevGF.HS.nua + L + 1, ), N.int) lasto[L:] = DevGF.HS.lasto basis = SIO.BuildBasis(options.fn, 1 + L, DevGF.HS.nua + L, lasto) basis.ii -= L WritePDOS(outFile + '.PDOS.gz', options, DevGF, DOSL + DOSR, basis) WritePDOS(outFile + '.PDOSL.gz', options, DevGF, DOSL, basis) WritePDOS(outFile + '.PDOSR.gz', options, DevGF, DOSR, basis) WriteMPSH(outFile + '.MPSH.gz', options, DevGF, MPSHL + MPSHR, ev0) WriteMPSH(outFile + '.MPSHL.gz', options, DevGF, MPSHL, ev0) WriteMPSH(outFile + '.MPSHR.gz', options, DevGF, MPSHR, ev0) Log.PrintMainFooter(options)
def main(options): dd = len(glob.glob(options.DestDir)) if len(glob.glob('TotalPotential.grid.nc')) == 0 and len(glob.glob('Rho.grid.nc')) == 0: sys.exit('TotalPotential.nc and Rho.grid.nc not found! Add "SaveTotalPotential true" and "SaveRho true" to RUN.fdf') if len(glob.glob('TotalPotential.grid.nc')) == 0: sys.exit('TotalPotential.nc not found! Add "SaveTotalPotential true" to RUN.fdf') if len(glob.glob('Rho.grid.nc')) == 0: sys.exit('Rho.grid.nc not found! Add "SaveRho true" to RUN.fdf') Log.CreatePipeOutput(options) VC.OptionsCheck(options) Log.PrintMainHeader(options) ## Step 1: Calculate scattering states from L/R on TranSiesta real space grid. if glob.glob(options.DestDir+'/kpoints') != []: # Check previous k-points f, oldk = open(options.DestDir+'/kpoints', 'r'), [] f.readline() for ii in f.readlines(): oldk += [N.array(ii.split(), N.float)] oldk = N.array(oldk) options.kpoints.mesh2file(options.DestDir+'/kpoints') doK = [] for ikpoint in range(len(options.kpoints.k)): ikdir = options.DestDir+'/%i'%(ikpoint) if not os.path.isdir(ikdir): os.mkdir(ikdir) doK += [ikpoint] #Check if some k points are already done doK = [] nokpts = len(options.kpoints.k) noFDcalcs = len(glob.glob('./'+options.DestDir+'/*/FDcurr*.nc')) for ii in range(nokpts): if len(glob.glob('./'+options.DestDir+'/'+str(ii)+'/FDcurr'+str(ii)+'.nc')) == 1: pass else: doK += [ii] if noFDcalcs > nokpts-1: print('\nAll ('+str(nokpts)+') k points are already finished!\n') elif noFDcalcs > 0 and noFDcalcs < nokpts: print(str(nokpts-len(doK))+' ('+str(N.round(100.*((1.*nokpts-len(doK))/nokpts), 1))+'%) k points already done. Will proceed with the rest.') print('You should perhaps remove the loc-basis states in the most recent k folder ') print('since some of these may not have been calculated before interuption.\n') else: if dd == 1: print('No STM calculations found in existing directory '+str(options.DestDir)+'/. Starting from scratch.') print('(...by possibly using saved localized-basis states)\n') else: print('STM calculation starts.') args = [(options, ik) for ik in doK] tmp = MP.runParallel(calcTSWFPar, args, nCPU=options.nCPU) print('Calculating k-point averaged STM image') def ShiftOrigin(mat, x, y): Nx = N.shape(mat)[0] Ny = N.shape(mat)[1] NewMat = N.zeros((Nx, Ny)) for ii in range(Nx): for jj in range(Ny): NewMat[N.mod(ii+x, Nx), N.mod(jj+y, Ny)] = mat[ii, jj] return NewMat file = NC.Dataset('TotalPotential.grid.nc', 'r') steps = N.array(file.variables['cell'][:], N.float) theta = N.arccos(N.dot(steps[0], steps[1])/(LA.norm(steps[0])*LA.norm(steps[1]))) currtmp = NC.Dataset('./'+options.DestDir+'/0/FDcurr0.nc', 'r') dimSTMimage = N.shape(currtmp.variables['Curr'][:, :]) dim1 = dimSTMimage[0] dim2 = dimSTMimage[1] STMimage = N.zeros((dim1, dim2)) tmpSTM = N.zeros((dim1*nokpts, dim2)) for ii in range(nokpts): file = NC.Dataset('./'+options.DestDir+'/'+str(ii)+'/FDcurr'+str(ii)+'.nc', 'r') ikSTMimage = file.variables['Curr'][:, :]/(nokpts) STMimage += ShiftOrigin(ikSTMimage, dim1 // 2, dim2 // 2) tmpSTM[ii*dim1:(ii+1)*dim1, :] = ShiftOrigin(ikSTMimage, dim1 // 2, dim2 // 2) STMimagekpt = N.zeros((dim1*options.Nk1, dim2*options.Nk2)) for ii in range(options.Nk1): for jj in range(options.Nk2): N1 = ii+1 N2 = options.Nk2-jj kk = (ii+1)*options.Nk2-jj-1 STMimagekpt[(N1-1)*dim1:N1*dim1, (N2-1)*dim2:N2*dim2] = tmpSTM[kk*dim1:(kk+1)*dim1, ::-1] tmp = open(options.systemlabel+'.XV').readlines()[4+options.DeviceFirst-1:4+options.DeviceLast] xyz = N.zeros((len(tmp), 4)) for ii in range(len(tmp)): for jj in range(1, 5): tmp2 = tmp[ii].split() xyz[ii, jj-1] = ast.literal_eval(tmp2[jj]) if jj > 1: xyz[ii, jj-1] = xyz[ii, jj-1]*PC.Bohr2Ang drAtoms = N.zeros(len(xyz)) for atomIdx in range(len(xyz)-1): drAtoms[atomIdx] = N.round((xyz[atomIdx+1][3]-xyz[atomIdx][3]), 3) TipHeight = N.max(drAtoms) n = writeNC.NCfile('./'+options.DestDir+'/STMimage.nc') n.write(STMimage, 'STMimage') n.write(theta, 'theta') n.write(options.kpoints.k, 'kpoints') n.write(options.Nk1, 'Nk1') n.write(options.Nk2, 'Nk2') n.write(STMimagekpt, 'STMkpoint') n.write(xyz, 'Geometry') n.write(TipHeight, 'TipHeight') n.close() Log.PrintMainFooter(options)