def RobotConnect4L(Ns, Nm):
    """
  Construct four layers of Izhikevich neurons and connect them together.
  Layers 0 and 1 comprise sensory neurons, while layers 2 and 3 comprise
  motor neurons. Sensory neurons excite contralateral motor neurons causing
  seeking behaviour. Layers are heterogenous populations of Izhikevich
  neurons with slightly different parameter values.

  Inputs:
  Ns -- Number of neurons in sensory layers
  Nm -- Number of neurons in motor layers
  """

    F = 50.0 / np.sqrt(Ns)  # Scaling factor
    Dmax = 5  # Maximum conduction delay

    N = 2 * Ns + 2 * Nm
    net = IzNetwork(N, Dmax)

    r = rn.rand(N)
    a = 0.02 * np.ones(N)
    b = 0.2 * np.ones(N)
    c = -65 + 15 * (r**2)
    d = 8 - 6 * (r**2)

    oneBlock = np.ones((Ns, Nm))

    # Block [i,j] is the connection from layer i to layer j
    W = np.bmat([[
        np.zeros((Ns, Ns)),
        np.zeros((Ns, Ns)),
        np.zeros((Ns, Nm)), F * oneBlock
    ],
                 [
                     np.zeros((Ns, Ns)),
                     np.zeros((Ns, Ns)), F * oneBlock,
                     np.zeros((Ns, Nm))
                 ],
                 [
                     np.zeros((Ns, Nm)),
                     np.zeros((Ns, Nm)),
                     np.zeros((Nm, Nm)),
                     np.zeros((Nm, Nm))
                 ],
                 [
                     np.zeros((Ns, Nm)),
                     np.zeros((Ns, Nm)),
                     np.zeros((Nm, Nm)),
                     np.zeros((Nm, Nm))
                 ]])

    D = Dmax * np.ones((N, N), dtype=int)

    net.setParameters(a, b, c, d)
    net.setDelays(D)
    net.setWeights(W)

    return net
def Connect2L(N0, N1):
    """
  Constructs two layers of Izhikevich neurons and connects them together.
  Layers are arrays of N neurons. Parameters for regular spiking neurons
  extracted from:

  http://www.izhikevich.org/publications/spikes.htm
  """

    F = 50 / np.sqrt(N1)  # Scaling factor
    D = 5  # Conduction delay
    Dmax = 10  # Maximum conduction delay

    net = IzNetwork([N0, N1], Dmax)

    # Neuron parameters
    # Each layer comprises a heterogenous set of neurons, with a small spread
    # of parameter values, so that they exhibit some dynamical variation
    # (To get a homogenous population of canonical "regular spiking" neurons,
    # multiply r by zero.)

    # Layer 0 (regular spiking)
    r = rn.rand(N1)
    net.layer[0].N = N0
    net.layer[0].a = 0.02 * np.ones(N0)
    net.layer[0].b = 0.20 * np.ones(N0)
    net.layer[0].c = -65 + 15 * (r**2)
    net.layer[0].d = 8 - 6 * (r**2)

    # Layer 1 (regular spiking)
    r = rn.rand(N1)
    net.layer[1].N = N1
    net.layer[1].a = 0.02 * np.ones(N1)
    net.layer[1].b = 0.20 * np.ones(N1)
    net.layer[1].c = -65 + 15 * (r**2)
    net.layer[1].d = 8 - 6 * (r**2)

    ## Connectivity matrix (synaptic weights)
    # layer[i].S[j] is the connectivity matrix from layer j to layer i
    # S(i,j) is the strength of the connection from neuron j to neuron i
    net.layer[1].S[0] = np.ones([N1, N0])
    net.layer[1].factor[0] = F
    net.layer[1].delay[0] = D * np.ones([N1, N0], dtype=int)

    return net
def RobotConnect4L(Ns, Nm):
  """
  Construct four layers of Izhikevich neurons and connect them together.
  Layers 0 and 1 comprise sensory neurons, while layers 2 and 3 comprise
  motor neurons. Sensory neurons excite contralateral motor neurons causing
  seeking behaviour. Layers are heterogenous populations of Izhikevich
  neurons with slightly different parameter values.

  Inputs:
  Ns -- Number of neurons in sensory layers
  Nm -- Number of neurons in motor layers
  """

  F    = 50.0/np.sqrt(Ns)  # Scaling factor
  Dmax = 5                 # Maximum conduction delay

  N = 2*Ns + 2*Nm
  net = IzNetwork(N, Dmax)

  r = rn.rand(N)
  a = 0.02*np.ones(N)
  b = 0.2*np.ones(N)
  c = -65 + 15*(r**2)
  d = 8 - 6*(r**2)

  oneBlock   = np.ones((Ns, Nm))

  # Block [i,j] is the connection from layer i to layer j
  W = np.bmat([[np.zeros((Ns,Ns)), np.zeros((Ns, Ns)), np.zeros((Ns,Nm)),        F*oneBlock],
               [np.zeros((Ns,Ns)), np.zeros((Ns, Ns)),        F*oneBlock, np.zeros((Ns,Nm))],
               [np.zeros((Ns,Nm)), np.zeros((Ns, Nm)), np.zeros((Nm,Nm)), np.zeros((Nm,Nm))],
               [np.zeros((Ns,Nm)), np.zeros((Ns, Nm)), np.zeros((Nm,Nm)), np.zeros((Nm,Nm))]])

  D = Dmax*np.ones((N,N), dtype=int)

  net.setParameters(a, b, c, d)
  net.setDelays(D)
  net.setWeights(W)

  return net
예제 #4
0
from jpype import *
import os
import numpy.random as rn
import sys
sys.path.append('../q1')
from IzNetwork import IzNetwork
from Plot import *

path = os.getcwd() + "/infodynamics.jar"
startJVM(getDefaultJVMPath(), "-Djava.class.path=" + path)

p = rn.random()
runtime = 60000

IN = IzNetwork(p, runtime)
IN.run()

print("{},{}".format(p, analyseFirings(IN.firings)))

shutdownJVM()
예제 #5
0
def RobotConnectAvoidance(Ns, Nm):
    """
  Construct four layers of Izhikevich neurons and connect them together, just
  as RobotConnect4L. Layers 0 and 1 comprise sensory neurons, while layers 2
  and 3 comprise motor neurons. In this case, sensory neurons excite
  ipsilateral motor neurons causing avoidance behaviour.

  Inputs:
  Ns -- Number of neurons in sensory layers
  Nm -- Number of neurons in motor layers
  """

    F = 50.0 / np.sqrt(Ns)  # Scaling factor
    D = 4  # Conduction delay
    Dmax = 5  # Maximum conduction delay

    net = IzNetwork([Ns, Ns, Nm, Nm], Dmax)

    # Layer 0 (Left sensory neurons)
    r = rn.rand(Ns)
    net.layer[0].N = Ns
    net.layer[0].a = 0.02 * np.ones(Ns)
    net.layer[0].b = 0.20 * np.ones(Ns)
    net.layer[0].c = -65 + 15 * (r**2)
    net.layer[0].d = 8 - 6 * (r**2)

    # Layer 1 (Right sensory neurons)
    r = rn.rand(Ns)
    net.layer[1].N = Ns
    net.layer[1].a = 0.02 * np.ones(Ns)
    net.layer[1].b = 0.20 * np.ones(Ns)
    net.layer[1].c = -65 + 15 * (r**2)
    net.layer[1].d = 8 - 6 * (r**2)

    # Layer 2 (Left motor neurons)
    r = rn.rand(Nm)
    net.layer[2].N = Nm
    net.layer[2].a = 0.02 * np.ones(Nm)
    net.layer[2].b = 0.20 * np.ones(Nm)
    net.layer[2].c = -65 + 15 * (r**2)
    net.layer[2].d = 8 - 6 * (r**2)

    # Layer 3 (Right motor neurons)
    r = rn.rand(Nm)
    net.layer[3].N = Nm
    net.layer[3].a = 0.02 * np.ones(Nm)
    net.layer[3].b = 0.20 * np.ones(Nm)
    net.layer[3].c = -65 + 15 * (r**2)
    net.layer[3].d = 8 - 6 * (r**2)

    # Connectivity matrix (synaptic weights)
    # layer[i].S[j] is the connectivity matrix from layer j to layer i
    # s[i,j] is the streght of the connection from neuron j to neuron i

    # Connect 0 to 2 and 1 to 3 for seeking behaviour
    net.layer[2].S[0] = np.ones([Nm, Ns])
    net.layer[2].factor[0] = F
    net.layer[2].delay[0] = D * np.ones([Nm, Ns], dtype=int)

    net.layer[3].S[1] = np.ones([Nm, Ns])
    net.layer[3].factor[1] = F
    net.layer[3].delay[1] = D * np.ones([Nm, Ns], dtype=int)

    return net
def BuildNetwork(rewiringProb):
    """
    Create a network with ExiNumrewiringProberMod*moduleNum excitatory
    Izhikevich neurons with 200 Inhibitory neurons, respectively.
    """
    moduleNum = 8
    ExiNumPerMod = 100
    ExiModConnNum = 1000
    InhiNum = 200
    InhiToExciNum = 4
    N = moduleNum * ExiNumPerMod + InhiNum
    Dmax = 20  # Max synaptic delay, in ms
    net = IzNetwork(N, Dmax)

    EtoESF = 17.0
    EtoISF = 50.0
    ItoESF = 2.0
    ItoISF = 1.0

    EtoEW = lambda: 1.0

    EtoIW = lambda: rn.rand()

    ItoEW = lambda: -rn.rand()

    ItoIW = lambda: -rn.rand()

    # Build Excitatory modules
    Modules = np.zeros([moduleNum, ExiNumPerMod, ExiNumPerMod])
    EtoEMatrix = np.zeros([ExiNumPerMod * moduleNum, ExiNumPerMod * moduleNum])
    for i in range(moduleNum):
        Module = BuildExcitoryModule(ExiNumPerMod, ExiModConnNum, EtoEW)
        Modules[i, :, :] = Module
        startX = i * ExiNumPerMod
        endX = startX + ExiNumPerMod
        EtoEMatrix[startX:endX, startX:endX] = Module

    # Rewiring Excitatory modules
    EtoEMx = EtoEMatrix[0:ExiNumPerMod * moduleNum, 0:ExiNumPerMod * moduleNum]
    for i in range(moduleNum):
        originalModule = Modules[i]
        for xCor in range(ExiNumPerMod):
            for yCor in range(ExiNumPerMod):
                if originalModule[xCor, yCor] > 0.0:
                    if rn.rand() < rewiringProb:
                        moduleIndex = rn.randint(0, 8, dtype="int")
                        while moduleIndex == i:
                            moduleIndex = rn.randint(0, 8, dtype="int")
                        NeuronIndex = rn.randint(0, 100, dtype="int")
                        xIndex = i * ExiNumPerMod + xCor
                        yIndex = i * ExiNumPerMod + yCor
                        # Delete original Wire
                        EtoEMx[xIndex, yIndex] = 0.0
                        # Rewire
                        newYIndex = moduleIndex * ExiNumPerMod + NeuronIndex
                        EtoEMx[xIndex, newYIndex] = EtoEW()

    EtoEMatrix[0:ExiNumPerMod * moduleNum, 0:ExiNumPerMod * moduleNum] = EtoEMx

    # Connect Excitatory to Inhibitory Neurons
    EtoIMatrix = np.zeros([ExiNumPerMod * moduleNum, InhiNum])
    randomInhiIndex = rn.choice(InhiNum, size=InhiNum, replace=False)
    for inhibitory in range(InhiNum):
        index = randomInhiIndex[inhibitory]
        for j in range(InhiToExciNum):
            EtoIMatrix[4 * index + j, inhibitory] = EtoIW()

    ItoEMatrix = np.zeros([InhiNum, ExiNumPerMod * moduleNum])
    for i in range(InhiNum):
        for j in range(ExiNumPerMod * moduleNum):
            ItoEMatrix[i, j] = ItoEW()

    ItoIMatrix = np.zeros([InhiNum, InhiNum])
    for i in range(InhiNum):
        for j in range(InhiNum):
            ItoIMatrix[i, j] = ItoIW()

    # Build network as a block matrix. Block [i,j] is the connection from
    # neuron i to neuron j
    WeightMatrix = np.bmat([[EtoESF * EtoEMatrix, EtoISF * EtoIMatrix],
                            [ItoESF * ItoEMatrix, ItoISF * ItoIMatrix]])

    WeightMatrix = np.array(WeightMatrix)
    # Plot connectivity matrix
    plt.matshow(WeightMatrix, vmin=-2.0, vmax=50.0)
    plt.show()

    CDMatrix = np.ones([N, N], dtype="int")
    for i in range(N):
        for j in range(N):
            if WeightMatrix[i, j] > 0.0:
                if i < ExiNumPerMod * moduleNum and j < ExiNumPerMod * moduleNum:
                    randomDelay = rn.randint(0, 20, dtype="int")
                    CDMatrix[i, j] = CDMatrix[i, j] + randomDelay

    # Plot connection delay matrix
    # plt.matshow(CDMatrix, vmin=1.0, vmax=20.0)
    # plt.show()

    # All neurons are heterogeneous excitatory or inhibitory regular spiking
    As = np.zeros([
        1000,
    ])
    Bs = np.zeros([
        1000,
    ])
    Cs = np.zeros([
        1000,
    ])
    Ds = np.zeros([
        1000,
    ])
    for i in range(1000):
        #   print is
        r = rn.rand()
        if i < 800:
            # Exi
            Ea = 0.02
            Eb = 0.2
            Ec = -65 + 15 * (r**2)
            Ed = 8 - 6 * (r**2)
            As[i] = Ea
            Bs[i] = Eb
            Cs[i] = Ec
            Ds[i] = Ed
        else:
            # Inhibitory
            Ia = 0.02 + 0.08 * r
            Ib = 0.25 - 0.05 * r
            Ic = -65
            Id = 2
            As[i] = Ia
            Bs[i] = Ib
            Cs[i] = Ic
            Ds[i] = Id

    net.setWeights(WeightMatrix)
    net.setDelays(CDMatrix)
    net.setParameters(np.array(As), np.array(Bs), np.array(Cs), np.array(Ds))

    return net
예제 #7
0
def Sync2Connect(N1, N2):
  """
  Constructs two populations of neurons (comprising two layers each) that
  oscillate in the gamma range using PING, and that can be couped together to
  study various synchronisation phenomena

  Coupling the excitatory populations causes the populations to synhronise 180
  degrees out of phase with each other if they have the same natural frequency.
  Coupling the inhibitory populations causes complete synchronisation with zero
  phase lag, even if they have slightly different natural frequencies.
  """

  # Conduction delays - 2 for 56Hz, 5 for 40Hz, 8 for 32Hz
  D1 = 6
  D2 = 4
  D = 5  # conduction delay for inter-population connections

  net = IzNetwork([N1, N2, N1, N2], max(D1, D2) + 1)

  # Neuron parameters
  # Each layer comprises a heterogenous set of neurons, with a small spread
  # of parameter values, so that they exhibit some dynamical variation

  # Layer 0 (excitatory - regular spiking)
  r = rn.rand(N1)
  net.layer[0].N = N1
  net.layer[0].a = 0.02 * np.ones(N1)
  net.layer[0].b = 0.20 * np.ones(N1)
  net.layer[0].c = -65 + 15*(r**2)
  net.layer[0].d = 8 - 6*(r**2)

  # Layer 1 (inhibitory - fast spiking)
  r = rn.rand(N2)
  net.layer[1].N = N2
  net.layer[1].a = 0.02 + 0.08*r
  net.layer[1].b = 0.25 - 0.05*r
  net.layer[1].c = -65 * np.ones(N2)
  net.layer[1].d = 2 * np.ones(N2)

  # Layer 2 (excitatory - regular spiking)
  r = rn.rand(N1)
  net.layer[2].N = N1
  net.layer[2].a = 0.02 * np.ones(N1)
  net.layer[2].b = 0.20 * np.ones(N1)
  net.layer[2].c = -65 + 15*(r**2)
  net.layer[2].d = 8 - 6*(r**2)

  # Layer 3 (inhibitory - fast spiking)
  r = rn.rand(N2)
  net.layer[3].N = N2
  net.layer[3].a = 0.02 + 0.08*r
  net.layer[3].b = 0.25 - 0.05*r
  net.layer[3].c = -65 * np.ones(N2)
  net.layer[3].d = 2 * np.ones(N2)

  # Connectivity matrix (synaptic weights)
  # layer{i}.S{j} is the connectivity matrix from layer j to layer i
  # s(i,j) is the strength of the connection from neuron j to neuron i

  # Excitatory to inhibitory connections
  net.layer[1].S[0] = rn.rand(N2, N1)
  net.layer[3].S[2] = rn.rand(N2, N1)

  # Inhibitory to excitatory connections
  net.layer[0].S[1] = -1.0*rn.rand(N1, N2)
  net.layer[2].S[3] = -1.0*rn.rand(N1, N2)

  # Excitatory to excitatory connections
  net.layer[0].S[0] = 1*(rn.rand(N1, N1) < 0.01)
  net.layer[2].S[2] = 1*(rn.rand(N1, N1) < 0.01)

  # Inhibitory to inhibitory connections
  net.layer[1].S[1] = -1.0*rn.rand(N2, N2)
  net.layer[3].S[3] = -1.0*rn.rand(N2, N2)

  # Coupling between populations (excitatory to excitatory)
  net.layer[2].S[0] = 1*(rn.rand(N1, N1) < 0.01)
  net.layer[0].S[2] = 1*(rn.rand(N1, N1) < 0.01)

  # Coupling between populations (excitatory to inhibitory)
  net.layer[3].S[0] = 1*(rn.rand(N2, N1) < 0.01)
  net.layer[1].S[2] = 1*(rn.rand(N2, N1) < 0.01)

  ## Scaling factors
  # Within oscillator 1
  net.layer[1].factor[0] = 2
  net.layer[0].factor[1] = 2
  net.layer[0].factor[0] = 17  # use 5 if excitatory couplings exist
  net.layer[1].factor[1] = 2

  # Within oscillator 2
  net.layer[3].factor[2] = 2
  net.layer[2].factor[3] = 2
  net.layer[2].factor[2] = 17  # use 5 if excitatory couplings exist
  net.layer[3].factor[3] = 2

  # Excit-Excit coupling. Deactivated by default
  net.layer[2].factor[0] = 0
  net.layer[0].factor[2] = 0

  # Excit-Inhib coupling
  net.layer[3].factor[0] = 12
  net.layer[1].factor[2] = 12

  ## Conduction delays
  # Within oscillator 1
  net.layer[1].delay[0] = D1 * np.ones([N2, N1])
  net.layer[0].delay[1] = D1 * np.ones([N1, N2])
  net.layer[0].delay[0] = D1 * np.ones([N1, N1])
  net.layer[1].delay[1] = D1 * np.ones([N2, N2])

  # Within oscillator 2
  net.layer[3].delay[2] = D2 * np.ones([N2, N1])
  net.layer[2].delay[3] = D2 * np.ones([N1, N2])
  net.layer[2].delay[2] = D2 * np.ones([N1, N1])
  net.layer[3].delay[3] = D2 * np.ones([N2, N2])

  net.layer[2].delay[0] = D * np.ones([N1, N1])
  net.layer[0].delay[2] = D * np.ones([N1, N1])

  net.layer[3].delay[0] = D * np.ones([N2, N1])
  net.layer[1].delay[2] = D * np.ones([N2, N1])

  return net
def RobotConnect4L(Ns, Nm, Ni):
  """
  Construct six layers of Izhikevich neurons and connect them together.
  Layers 0 and 1 comprise sensory neurons, while layers 2 and 3 comprise
  motor neurons, and layers 4 and 5 comprise inhibitory neurons. Sensory
  neurons excite contralateral motor neurons causing
  seeking behaviour. Layers are heterogenous populations of Izhikevich
  neurons with slightly different parameter values.

  Inputs:
  Ns -- Number of neurons in sensory layers
  Nm -- Number of neurons in motor layers
  Ni -- Number of neurons in inhibitory layers
  """

  F    = 50.0/np.sqrt(Ns)  # Scaling factor
  D    = 4                 # Conduction delay
  Dmax = 5                 # Maximum conduction delay

  net = IzNetwork([Ns, Ns, Nm, Nm, Ni, Ni], Dmax)

  # Layer 0 (Left sensory neurons)
  r = rn.rand(Ns)
  net.layer[0].N = Ns
  net.layer[0].a = 0.02 * np.ones(Ns)
  net.layer[0].b = 0.20 * np.ones(Ns)
  net.layer[0].c = -65 + 15*(r**2)
  net.layer[0].d = 8 - 6*(r**2)

  # Layer 1 (Right sensory neurons)
  r = rn.rand(Ns)
  net.layer[1].N = Ns
  net.layer[1].a = 0.02 * np.ones(Ns)
  net.layer[1].b = 0.20 * np.ones(Ns)
  net.layer[1].c = -65 + 15*(r**2)
  net.layer[1].d = 8 - 6*(r**2)

  # Layer 2 (Left motor neurons)
  r = rn.rand(Nm)
  net.layer[2].N = Nm
  net.layer[2].a = 0.02 * np.ones(Nm)
  net.layer[2].b = 0.20 * np.ones(Nm)
  net.layer[2].c = -65 + 15*(r**2)
  net.layer[2].d = 8 - 6*(r**2)

  # Layer 3 (Right motor neurons)
  r = rn.rand(Nm)
  net.layer[3].N = Nm
  net.layer[3].a = 0.02 * np.ones(Nm)
  net.layer[3].b = 0.20 * np.ones(Nm)
  net.layer[3].c = -65 + 15*(r**2)
  net.layer[3].d = 8 - 6*(r**2)

  # Layer 4 (Left inhibitory neurons)
  r = rn.rand(Ni)
  net.layer[4].N = Ni
  net.layer[4].a = 0.02 * np.ones(Nm)
  net.layer[4].b = 0.20 * np.ones(Nm)
  net.layer[4].c = -65 + 15*(r**2)
  net.layer[4].d = 8 - 6*(r**2)

  # Layer 5 (Right inhibitory neurons)
  r = rn.rand(Ni)
  net.layer[5].N = Ni
  net.layer[5].a = 0.02 * np.ones(Nm)
  net.layer[5].b = 0.20 * np.ones(Nm)
  net.layer[5].c = -65 + 15*(r**2)
  net.layer[5].d = 8 - 6*(r**2)

  # Connectivity matrix (synaptic weights)
  # layer[i].S[j] is the connectivity matrix from layer j to layer i
  # s[i,j] is the streght of the connection from neuron j to neuron i

  # Connect 0 to 3 and 1 to 2 for seeking behaviour
  net.layer[3].S[0]      = np.ones([Nm, Ns])
  net.layer[3].factor[0] = F
  net.layer[3].delay[0]  = D * np.ones([Nm, Ns], dtype=int)

  net.layer[2].S[1]      = np.ones([Nm, Ns])
  net.layer[2].factor[1] = F
  net.layer[2].delay[1]  = D * np.ones([Nm, Ns], dtype=int)

  # Connect 2 to 4 and 3 to 5
  net.layer[4].S[2]      = np.ones([Ni, Nm])
  net.layer[4].factor[2] = F
  net.layer[4].delay[2]  = D * np.ones([Ni, Nm], dtype=int)

  net.layer[5].S[3]      = np.ones([Ni, Nm])
  net.layer[5].factor[3] = F
  net.layer[5].delay[3]  = D * np.ones([Ni, Nm], dtype=int)

  # Connect 2 to 5 and 3 to 4
  net.layer[3].S[4]      = (-1)*np.ones([Ni, Nm])
  net.layer[3].factor[4] = F
  net.layer[3].delay[4]  = D * np.ones([Ni, Nm], dtype=int)

  net.layer[2].S[5]      = (-1)*np.ones([Ni, Nm])
  net.layer[2].factor[5] = F
  net.layer[2].delay[5]  = D * np.ones([Ni, Nm], dtype=int)

  # Connect 4 and 5 (both ways)
  net.layer[4].S[5]      = (-1)*np.ones([Ni, Ni])
  net.layer[4].factor[5] = F
  net.layer[4].delay[5]  = D * np.ones([Ni, Ni], dtype=int)

  net.layer[5].S[4]      = (-1)*np.ones([Ni, Ni])
  net.layer[5].factor[4] = F
  net.layer[5].delay[4]  = D * np.ones([Ni, Ni], dtype=int)


  return net