def get_multiday_ave_compare(code, dayl='10'): dtick = ts.get_today_ticks(code) d_hist = ema.getdata_ema_trend(code, dayl, 'd') # print d_hist day_t = ema.get_today() if day_t in d_hist.index: dl = d_hist.drop(day_t).index else: dl = d_hist.index # print dl # print dl ep_list = [] for da in dl.values: # print da td = ts.get_tick_data(code, da) # print td if not type(td) == types.NoneType: ep = td['amount'].sum() / td['volume'].sum() ep_list.append(ep) print ("D: %s P: %s" % (da[-5:], ep)) ave = ema.less_average(ep_list) if len(dtick.index) > 0: ep = dtick['amount'].sum() / dtick['volume'].sum() p_now = dtick['price'].values[0] * 100 if p_now > ave and ep > ave: print ("GOLD:%s ep:%s UP:%s!!! A:%s %s !!!" % (code, ep, p_now, ave, cct.get_now_time())) elif p_now > ave and ep < ave: print ("gold:%s ep:%s UP:%s! A:%s %s !" % (code, ep, p_now, ave, cct.get_now_time())) elif p_now < ave and ep > ave: print ("down:%s ep:%s Dow:%s? A:%s %s ?" % (code, ep, p_now, ave, cct.get_now_time())) else: print ("DOWN:%s ep:%s now:%s??? A:%s %s ???" % (code, ep, p_now, ave, cct.get_now_time())) return ave
def get_multiday_ave_compare(code, dayl='10'): dtick = ts.get_today_ticks(code) d_hist = ema.getdata_ema_trend(code, dayl, 'd') # print d_hist day_t = ema.get_today() if d_hist is not None: if day_t in d_hist.index: dl = d_hist.drop(day_t).index else: dl = d_hist.index else: return 0 # print dl # print dl ep_list = [] for da in dl.values: # print da td = ts.get_tick_data(code, da) # print td if not type(td) == types.NoneType: ep = td['amount'].sum() / td['volume'].sum() ep_list.append(ep) print("D: %s P: %s" % (da[-5:], ep)) ave = ema.less_average(ep_list) if len(dtick.index) > 0: ep = dtick['amount'].sum() / dtick['volume'].sum() p_now = dtick['price'].values[0] * 100 if p_now > ave and ep > ave: print("GOLD:%s ep:%s UP:%s!!! A:%s %s !!!" % (code, ep, p_now, ave, cct.get_now_time())) elif p_now > ave and ep < ave: print("gold:%s ep:%s UP:%s! A:%s %s !" % (code, ep, p_now, ave, cct.get_now_time())) elif p_now < ave and ep > ave: print("down:%s ep:%s Dow:%s? A:%s %s ?" % (code, ep, p_now, ave, cct.get_now_time())) else: print("DOWN:%s ep:%s now:%s??? A:%s %s ???" % (code, ep, p_now, ave, cct.get_now_time())) return ave
'dT:%s' % cct.get_time_to_date(time_s), 'G:%s' % goldstock, 'zxg: %s' % (blkname) ]) top_all = tdd.get_powerdf_to_all(top_all, top_temp) top_all = tdd.get_powerdf_to_all(top_all, top_end) top_temp = stf.getBollFilter(df=top_temp, boll=ct.bollFilter, duration=ct.PowerCountdl) print("N:%s K:%s %s G:%s" % (now_count, len(top_all[top_all['buy'] > 0]), len(top_now[top_now['volume'] <= 0]), goldstock)), print "Rt:%0.1f dT:%s N:%s T:%s %s%%" % ( float(time.time() - time_Rt), cct.get_time_to_date(time_s), cct.get_now_time(), len(top_temp), round( len(top_temp) / now_count * 100, 1)) # top_end = stf.getBollFilter(df=top_end, boll=ct.bollFilter,duration=ct.PowerCountdl) if 'op' in top_temp.columns: if cct.get_now_time_int( ) > ct.checkfilter_end_timeDu and ( int(duration_date) > int(ct.duration_date_sort) or int(duration_date) < ct.duration_diff): top_temp = top_temp.sort_values( by=eval(market_sort_value), ascending=market_sort_value_key) else: top_temp = top_temp.sort_values( by=eval(market_sort_value), ascending=market_sort_value_key)
top_temp = top_dif[-ct.PowerCount:].copy() top_temp = pct.powerCompute_df(top_temp, dl=ct.PowerCountdl, talib=True) top_end = pct.powerCompute_df(top_end, dl=ct.PowerCountdl, talib=True) cct.set_console(width, height, title=[du_date, 'dT:%s' % cct.get_time_to_date(time_s), 'G:%s' % goldstock, 'zxg: %s' % (blkname)]) top_all = tdd.get_powerdf_to_all(top_all, top_temp) top_all = tdd.get_powerdf_to_all(top_all, top_end) top_temp = stf.getBollFilter(df=top_temp, boll=ct.bollFilter, duration=ct.PowerCountdl) print("N:%s K:%s %s G:%s" % ( now_count, len(top_all[top_all['buy'] > 0]), len(top_now[top_now['volume'] <= 0]), goldstock)), print "Rt:%0.1f dT:%s N:%s T:%s %0.1f%%" % (float(time.time() - time_Rt), cct.get_time_to_date(time_s), cct.get_now_time(), len(top_temp), round(len(top_temp) / now_count * 100, 1)) # top_end = stf.getBollFilter(df=top_end, boll=ct.bollFilter,duration=ct.PowerCountdl) if 'op' in top_temp.columns: if cct.get_now_time_int() > ct.checkfilter_end_timeDu and (int(duration_date) > int(ct.duration_date_sort) or int(duration_date) < ct.duration_diff): top_temp = top_temp.sort_values(by=eval(market_sort_value), ascending=market_sort_value_key) else: top_temp = top_temp.sort_values(by=eval(market_sort_value), ascending=market_sort_value_key) if cct.get_now_time_int() > 915 and cct.get_now_time_int() < 935: # top_temp = top_temp[top_temp['ma5d'] > top_temp['ma10d']][:10] # top_temp = top_temp[ (top_temp['ma5d'] > top_temp['ma10d']) & (top_temp['buy'] > top_temp['ma10d']) ][:10] top_dd = pd.concat([top_temp[:10], top_end], axis=0) # top_dd = top_dd.drop_duplicates() top_dd = top_dd.loc[:, ct.Duration_format_buy]
title=[ 'dT:%s' % cct.get_time_to_date(time_s), 'G:%s' % len(top_dif), 'zxg: %s' % (blkname) ]) top_all = tdd.get_powerdf_to_all(top_all, top_temp) top_temp = stf.getBollFilter(df=top_temp, boll=ct.bollFilter, duration=ct.PowerCountdl) print("A:%s N:%s K:%s %s G:%s" % (df_count, now_count, len(top_all[top_all['buy'] > 0]), len(top_now[top_now['volume'] <= 0]), goldstock)), print "Rt:%0.1f dT:%s N:%s T:%s %s%%" % ( float(time.time() - time_Rt), cct.get_time_to_date(time_s), cct.get_now_time(), len(top_temp), round(len(top_temp) / now_count * 100, 1)) if 'op' in top_temp.columns: top_temp = top_temp.sort_values( by=eval(market_sort_value), ascending=market_sort_value_key) # if cct.get_now_time_int() > 915 and cct.get_now_time_int() < 935: # top_temp = top_temp.loc[:,ct.MonitorMarket_format_buy] # else: # top_temp = top_temp.loc[:,ct.MonitorMarket_format_buy] print rl.format_for_print( top_temp.loc[:, ct.MonitorMarket_format_buy][:10]) # print rl.format_for_print(top_dif[:10])