예제 #1
0
def savesetMTnosc(TR, alldat, name):  #  also save PSTH
    #  u, B, singleFreqAR, dt, stNz, x, dN, prbs
    bfn = "cnt_data"
    bfn = "noscp"
    fmt = "% .2e "
    fmt *= TR

    _N.savetxt(resFN("%s.dat" % bfn, dir=name, create=True), alldat, fmt=fmt)
예제 #2
0
def saveset(name, noparam=False):
    #  u, B, singleFreqAR, dt, stNz, x, dN, prbs
    xprbsdN = _N.empty((N + 1, 3))
    xprbsdN[:, 0] = x[:]
    xprbsdN[:, 1] = prbs[:]
    xprbsdN[:, 2] = dN[:]

    _N.savetxt(resFN("xprbsdN.dat", dir=name, create=True),
               xprbsdN,
               fmt="%.5e")

    if not noparam:
        fp = open(resFN("params.py", dir=name, create=True), "w")
        fp.write("u=%.3f\n" % u)
        fp.write("beta=%s\n" % arrstr(beta))
        fp.write("ARcoeff=_N.array(%s)\n" % str(ARcoeff))
        fp.write("alfa=_N.array(%s)\n" % str(alfa))
        fp.write("#  ampAngRep=%s\n" % ampAngRep(alfa))
        fp.write("dt=%.2e\n" % dt)
        fp.write("stNz=%.3e\n" % stNz)
        fp.write("absrefr=%d\n" % absrefr)
        fp.close()
예제 #3
0
def loadKnown(setname, trials=None, fn="known.dat"):
    fn = resFN(fn, dir=setname)
    if os.access(fn, os.F_OK):
        print "***  loaded known signal \"%s\" ***" % fn
        a = _N.loadtxt(fn)
        if trials is None:
            return a.T
        else:
            return a.T[trials]
    print "!!!  NO known signal loaded !!!"
    if fn is not None:
        print "!!!  Couldn't find \"%s\" !!!" % fn

    return None
예제 #4
0
def savesetMT(TR, alldat, model, name):
    #  u, B, singleFreqAR, dt, stNz, x, dN, prbs
    bfn = "cnt_data"
    fmt = ""
    if model != "bernoulli":
        fmt += "% .2e "
        fmt += "%d "
        fmt *= TR
    if model == "bernoulli":
        bfn = "xprbsdN"
        fmt += "% .2e "
        fmt += "%.4e %d "
        fmt *= TR

    _N.savetxt(resFN("%s.dat" % bfn, dir=name, create=True), alldat, fmt=fmt)
예제 #5
0
def loadL2(setname, fn=None):
    if fn is not None:
        fn = resFN(fn, dir=setname)
        if os.access(fn, os.F_OK):
            print "***  loaded spike history file \"%s\" ***" % fn
            spkhist = _N.loadtxt(fn)
            print spkhist[0:50]
            loghist = _N.log(spkhist)
            print loghist[0:50]
            print "-----------------"
            tooneg = _N.where(loghist < -6)[0]
            loghist[tooneg] = -6
            return loghist
        print "!!!  NO history file loaded !!!"
        if fn is not None:
            print "!!!  Couldn't find short-term history \"%s\" !!!" % fn

    return None
예제 #6
0
def savesetARpn(name):
    #  u, B, singleFreqAR, dt, stNz, x, dN, prbs
    xxlxhy = _N.empty((N + 1, 4))
    xxlxhy[:, 0] = x[:]
    xxlxhy[:, 1] = loAR[:]
    xxlxhy[:, 2] = hiAR[:]
    xxlxhy[:, 3] = y[:]

    _N.savetxt(datFN("xxlxhy.dat", dir=name, create=True), xxlxhy, fmt="%.5e")

    fp = open(resFN("params.py", dir=name, create=True), "w")
    fp.write("arLO=%s\n" % str(arLO))  #  want to keep these as list
    fp.write("arHI=%s\n" % str(arHI))
    fp.write("dt=%.2e\n" % dt)
    fp.write("stNzL=%.3e\n" % stNzL)
    fp.write("stNzH=%.3e\n" % stNzH)
    fp.write("obsNz=%.3e\n" % obsNz)
    fp.write("H=%s\n" % arrstr(H))
    fp.close()
예제 #7
0
def oscPer(setname,
           fltPrms=[5, 13, 1, 20],
           t0=None,
           t1=None,
           tr0=0,
           tr1=None,
           trials=None,
           fn=None,
           showHist=True,
           osc=None):
    """
    find period of oscillation
    """

    if t0 is None:
        t0 = 0
    if t1 is None:
        t1 = Na

    if setname is not None:
        _dat = _N.loadtxt(resFN("xprbsdN.dat", dir=setname))

        #  modulation histogram.  phase @ spike
        Na, cols = _dat.shape

        p = _re.compile("^\d{6}")  # starts like "exptDate-....."
        m = p.match(setname)

        bRealDat = True
        COLS = 4
        sub = 1

        if m == None:
            bRealDat = False
            COLS = 3
            sub = 0

        TR = cols / COLS
        if trials is None:
            if tr1 is None:
                tr1 = TR
            trials = _N.arange(tr0, tr1)

        N = t1 - t0
        dat = _dat[t0:t1, :]
    elif osc is not None:
        TR, N = osc.shape
        trials = _N.arange(TR)

        bRealDat = False
        COLS = 3
        sub = 0
        dat = _N.empty((N, COLS * TR))
        dat[:, sub::COLS] = osc.T

    Ts = []
    for tr in trials:
        x = dat[:, tr * COLS + sub]

        if fltPrms is None:
            fx = x
        elif len(fltPrms) == 2:
            fx = lpFilt(fltPrms[0], fltPrms[1], 500, x)
        else:  # 20, 40, 10, 55    #(fpL, fpH, fsL, fsH, nyqf, y):
            fx = bpFilt(fltPrms[0], fltPrms[1], fltPrms[2], fltPrms[3], 500, x)

        intvs = _N.where((fx[1:] < 0) & (fx[0:-1] >= 0))

        Ts.extend(_N.diff(intvs[0]))

    if showHist:
        fig = _plt.figure()
        _plt.hist(Ts, bins=range(min(Ts) - 1, max(Ts) + 1))
    mn = _N.mean(Ts)
    std = _N.std(Ts)
    print "mean Hz %(f).3f    cv: %(cv).3f" % {
        "cv": (std / mn),
        "f": (1000 / mn)
    }
예제 #8
0
def figCircularDistribution(phs,
                            cSpkPhs,
                            sSpkPhs,
                            trials,
                            setname=None,
                            surrogates=1,
                            normed=False,
                            fn=None,
                            maxY=None,
                            yticks=None,
                            color=None,
                            smFnt=20,
                            bgFnt=22,
                            xlabel="phase"):  #  phase histogram
    ltr = len(trials)
    inorderTrials = _N.arange(ltr)  #  original trial IDs no lnger necessary
    R2s = _N.empty(surrogates)
    for srgt in xrange(surrogates):
        if srgt == 0:
            trls = inorderTrials
        else:
            trls = inorderTrials[_N.sort(
                _N.asarray(_N.random.rand(ltr) * ltr, _N.int))]

        cS = []
        sS = []
        for tr in trls:
            cS.extend(cSpkPhs[tr])
            sS.extend(sSpkPhs[tr])

        Nspks = len(cS)
        vcSpkPhs = _N.array(cS)
        vsSpkPhs = _N.array(sS)

        R2s[srgt] = _N.sqrt((1. / (Nspks * Nspks)) *
                            (_N.sum(vcSpkPhs)**2 + _N.sum(vsSpkPhs)**2))

    vPhs = _N.fromiter(itls.chain.from_iterable(phs), _N.float)
    fig, ax = _plt.subplots(figsize=(6, 4.2))
    if color is None:
        ec = mC.hist1
    else:
        ec = color
    _plt.hist(vPhs.tolist() + (vPhs + 1).tolist(),
              bins=_N.linspace(0, 2, 51),
              color=ec,
              edgecolor=ec,
              normed=normed)

    if maxY is not None:
        _plt.ylim(0, maxY)
    elif normed:
        _plt.ylim(0, 1)
    #_plt.title("R = %.3f" % _N.sqrt(R2), fontsize=smFnt)
    _plt.xlabel(xlabel, fontsize=bgFnt)
    _plt.ylabel("prob. density", fontsize=bgFnt)
    _plt.xticks(fontsize=smFnt)
    _plt.yticks(fontsize=smFnt)
    if yticks is not None:
        #  plotting 2 periods, probability is halved, so boost it by 2
        _plt.yticks(yticks[0], yticks[1])

    ax.spines["top"].set_visible(False)
    ax.spines["right"].set_visible(False)
    ax.spines["left"].axis.axes.tick_params(direction="out", width=2)
    ax.spines["bottom"].axis.axes.tick_params(direction="out", width=2)

    ax.yaxis.set_ticks_position("left")
    ax.xaxis.set_ticks_position("bottom")
    #    for tic in ax.xaxis.get_major_ticks():
    #   tic.tick1On = tic.tick2On = False

    fig.subplots_adjust(left=0.17, bottom=0.19, right=0.95, top=0.92)

    if fn is None:
        fn = "modulationHistogram,R=%.3f.eps" % R2s[0]
    else:
        fn = "%(1)s,R=%(2).3f.eps" % {"1": fn, "2": R2s[0]}

    if setname is not None:
        _plt.savefig(resFN(fn, dir=setname), transparent=True)
    else:
        _plt.savefig(fn, transparent=True)
    _plt.close()
    return R2s
예제 #9
0
def modhistAll(setname,
               shftPhase=0,
               fltPrms=[3.3, 11, 1, 15],
               t0=None,
               t1=None,
               tr0=0,
               tr1=None,
               trials=None,
               fn=None,
               maxY=None,
               yticks=None,
               normed=False,
               surrogates=1,
               color=None,
               nofig=False,
               flatten=False,
               filtCol=0,
               xlabel=None,
               smFnt=20,
               bgFnt=22):
    """
    shftPhase from 0 to 1.  
    yticks should look like [[0.5, 1, 1.5], ["0.5", "1", "1.5"]]
    """

    _dat = _N.loadtxt(resFN("xprbsdN.dat", dir=setname))
    #  modulation histogram.  phase @ spike
    Na, cols = _dat.shape

    t0 = 0 if (t0 is None) else t0
    t1 = Na if (t1 is None) else t1

    dat = _dat[t0:t1, :]
    N = t1 - t0

    p = _re.compile("^\d{6}")  # starts like "exptDate-....."
    m = p.match(setname)

    bRealDat, COLS, sub, phC = True, 4, 2, 3

    if m == None:
        bRealDat, COLS, sub = False, 3, 1

    print "realDat is %s" % str(bRealDat)

    TR = cols / COLS
    tr1 = TR if (tr1 is None) else tr1

    trials = _N.arange(tr0, tr1) if (trials is None) else trials
    if type(trials) == list:
        trials = _N.array(trials)

    phs = []
    cSpkPhs = []
    sSpkPhs = []

    for tr in trials:
        if fltPrms is not None:
            x = dat[:, tr * COLS]
            if len(fltPrms) == 2:
                fx = lpFilt(fltPrms[0], fltPrms[1], 500, x)
            elif len(fltPrms) == 4:
                # 20, 40, 10, 55 #(fpL, fpH, fsL, fsH, nyqf, y):
                fx = bpFilt(fltPrms[0], fltPrms[1], fltPrms[2], fltPrms[3],
                            500, x)
        else:
            fx = dat[:, tr * COLS + filtCol]

        ht_x = _ssig.hilbert(fx)
        ph_x = (_N.arctan2(ht_x.imag, ht_x.real) + _N.pi) / (2 * _N.pi)
        ph_x = _N.mod(ph_x + shftPhase, 1)

        ispks = _N.where(dat[:, tr * COLS + (COLS - sub)] == 1)[0]
        cSpkPhs.append(_N.cos(2 * _N.pi * ph_x[ispks]))
        sSpkPhs.append(_N.sin(2 * _N.pi * ph_x[ispks]))
        phs.append(ph_x[ispks])

    if nofig:
        if not flatten:
            return phs
        else:
            fl = []
            for i in xrange(len(phs)):
                fl.extend(phs[i])
            return fl
    return figCircularDistribution(phs,
                                   cSpkPhs,
                                   sSpkPhs,
                                   trials,
                                   surrogates=surrogates,
                                   normed=normed,
                                   fn=fn,
                                   maxY=maxY,
                                   yticks=yticks,
                                   setname=setname,
                                   color=color,
                                   xlabel=xlabel,
                                   smFnt=smFnt,
                                   bgFnt=bgFnt)
예제 #10
0
def runNotes(setname, ID_q2, TR0, TR1):
    fp = open(resFN("notes.txt", dir=setname), "w")
    fp.write("ID_q2=%s\n" % str(ID_q2))
    fp.write("TR0=%d\n" % TR0)
    fp.write("TR1=%d\n" % TR1)
    fp.close()
예제 #11
0
def loadDat(setname,
            model,
            t0=0,
            t1=None,
            filtered=False,
            phase=False):  ##################################
    if model == "bernoulli":
        x_st_cnts = _N.loadtxt(resFN("xprbsdN.dat", dir=setname))
        y_ch = 2  #  spike channel
        p = _re.compile("^\d{6}")  # starts like "exptDate-....."
        m = p.match(setname)

        bRealDat = True
        dch = 4  #  # of data columns per trial

        if m == None:
            bRealDat = False
            dch = 3
        else:
            flt_ch = 1  # Filtered LFP
            ph_ch = 3  # Hilbert Trans
    else:
        x_st_cnts = _N.loadtxt(resFN("cnt_data.dat", dir=setname))
        y_ch = 1  # spks

        dch = 2
    TR = x_st_cnts.shape[1] / dch

    #  READ parameters of generative model from file
    #  contains N, k, singleFreqAR, u, beta, dt, stNz
    n0 = t0
    N = x_st_cnts.shape[0] - 1
    if t1 == None:
        t1 = N + 1
    #  meaning of N changes here
    N = t1 - 1 - t0

    if TR == 1:
        x = x_st_cnts[t0:t1, 0]
        y = x_st_cnts[t0:t1, y_ch]
        fx = x_st_cnts[t0:t1, 0]
        px = x_st_cnts[t0:t1, y_ch]
        x = x.reshape(1, t1 - t0)
        y = y.reshape(1, t1 - t0)
        fx = x.reshape(1, t1 - t0)
        px = y.reshape(1, t1 - t0)
    else:
        x = x_st_cnts[t0:t1, ::dch].T
        y = x_st_cnts[t0:t1, y_ch::dch].T
        if filtered:
            fx = x_st_cnts[t0:t1, flt_ch::dch].T
        if phase:
            px = x_st_cnts[t0:t1, ph_ch::dch].T

    if model == "bernoulli":
        global prbs
        if TR == 1:
            prbs = x_st_cnts[t0:t1, 1]
        else:
            prbs = x_st_cnts[t0:t1, 1::dch].T

    #  FIXED params
    r = 200
    n = 10

    #  INITIAL samples
    if TR > 1:
        mnCt = _N.mean(y, axis=1)
    else:
        mnCt = _N.array([_N.mean(y)])

    #  remove trials where data has no information
    rmTrl = []
    print(TR)
    kpTrl = range(TR)
    if model == "binomial":
        kp = y - n * 0.5
        rn = n
        p0 = mnCt / float(rn)  #  matches 1 - p of genearted
        u = _N.log(p0 / (1 - p0))  #  -1*u generated
    elif model == "negative binomial":
        kp = (y - r) * 0.5
        rn = r
        p0 = mnCt / (mnCt + rn)  #  matches 1 - p of genearted
        u = _N.log(p0 / (1 - p0))  #  -1*u generated
    else:
        kp = y - 0.5
        rn = 1
        dt = 0.001
        logdt = _N.log(dt)
        if TR > 1:
            ysm = _N.sum(y, axis=1)
            for tr in xrange(TR - 1, -1, -1):
                if ysm[tr] == 0:
                    print("!!!!!!!!!!!!!!     trial w/ 0 spks!!!!!!!")
                    rmTrl.append(tr)
                    kpTrl.pop(tr)
                    ysm[tr] = 10  #  this trial will be removed anyway
            u = _N.log(ysm / ((N + 1 - ysm) * dt)) + logdt
        else:
            u = _N.array(
                [_N.log(_N.sum(y) / ((N + 1 - _N.sum(y)) * dt)) + logdt])
    TR = TR - len(rmTrl)
    if filtered and phase:
        return TR, rn, x, y, fx, px, N, kp, u, rmTrl, kpTrl
    elif filtered and (not phase):
        return TR, rn, x, y, fx, N, kp, u, rmTrl, kpTrl
    elif (not filtered) and phase:
        return TR, rn, x, y, px, N, kp, u, rmTrl, kpTrl
    return TR, rn, x, y, N, kp, u, rmTrl, kpTrl
예제 #12
0
def create(setname):
    # _plt.ioff()
    copyfile(
        "%s.py" % setname, "%(s)s/%(s)s.py" % {
            "s": setname,
            "to": setFN("%s.py" % setname, dir=setname, create=True)
        })
    global dt, lambda2, rpsth, isis, us, csTR, etme, bGenOscUsingAR, f0VAR, f0, Bf, Ba, amp, amp_nz, dSA, dSF, psth
    if bGenOscUsingAR:
        ARcoeff = _N.empty((nRhythms, 2))
        for n in xrange(nRhythms):
            ARcoeff[n] = (-1 * _Npp.polyfromroots(alfa[n])[::-1][1:]).real
        stNzs = _N.empty((TR, nRhythms))
        for tr in xrange(TR):
            if _N.random.rand() < lowQpc:
                lowQs.append(tr)
                stNzs[tr] = nzs[:, 0]
            else:
                stNzs[tr] = nzs[:, 1]  #  high
    elif bGenOscUsingSines:
        if f0VAR is None:
            f0VAR = _N.zeros(TR)
        sig = 0.1
        x, y = createDataAR(100000, Bf, sig, sig)
        stdf = _N.std(
            x)  #  choice of 4 std devs to keep phase monotonically increasing
        x, y = createDataAR(100000, Ba, sig, sig)
        stda = _N.std(
            x)  #  choice of 4 std devs to keep phase monotonically increasing

    #  x, prbs, spks    3 columns
    nColumns = 3
    alldat = _N.empty((N, TR * nColumns))
    probNOsc = _N.empty((N, TR))
    spksPT = _N.empty(TR)

    lowQs = []
    isis = []
    rpsth = []

    if csTR is None:
        csTR = _N.ones(TR)
    if etme is None:
        etme = _N.ones((TR, N))
    if us is None:
        us = _N.zeros(TR)
    elif (type(us) is float) or (type(us) is int):
        us = _N.zeros(TR) * us
    for tr in xrange(TR):
        if bGenOscUsingAR:
            #x, dN, prbs, fs, prbsNOsc = createDataPPl2(TR, N, dt, ARcoeff, psth + us[tr], stNzs[tr], lambda2=lambda2, p=1, nRhythms=nRhythms, cs=csTR[tr], etme=etme[tr])
            #  psth is None.  Turn it off for now
            x, dN, prbs, fs, prbsNOsc = createDataPPl2(TR,
                                                       N,
                                                       dt,
                                                       ARcoeff,
                                                       us[tr],
                                                       stNzs[tr],
                                                       lambda2=lambda2,
                                                       p=1,
                                                       nRhythms=nRhythms,
                                                       cs=csTR[tr],
                                                       etme=etme[tr],
                                                       offset=psth)
        else:
            xosc = createFlucOsc(
                f0,
                _N.array([f0VAR[tr]]),
                N,
                dt,
                1,
                Bf=Bf,
                Ba=Ba,
                amp=amp,
                amp_nz=amp_nz,
                stdf=stdf,
                stda=stda,
                sig=sig,
                smoothKer=5,
                dSA=dSA,
                dSF=dSF
            ) * etme[
                tr]  # sig is arbitrary, but we need to keep it same as when stdf, stda measured
            #x, dN, prbs, fs, prbsNOsc = createDataPPl2(TR, N, dt, None, psth + us[tr], None, lambda2=lambda2, p=1, nRhythms=1, cs=csTR[tr], etme=etme[tr], x=xosc[0])
            x, dN, prbs, fs, prbsNOsc = createDataPPl2(TR,
                                                       N,
                                                       dt,
                                                       None,
                                                       us[tr],
                                                       None,
                                                       lambda2=lambda2,
                                                       p=1,
                                                       nRhythms=1,
                                                       cs=csTR[tr],
                                                       etme=etme[tr],
                                                       x=xosc,
                                                       offset=psth)

        spksPT[tr] = _N.sum(dN)
        rpsth.extend(_N.where(dN == 1)[0])
        alldat[:, nColumns * tr] = _N.sum(x, axis=0).T * etme[tr] * csTR[tr]
        alldat[:, nColumns * tr + 1] = prbs
        alldat[:, nColumns * tr + 2] = dN
        probNOsc[:, tr] = prbsNOsc
        isis.extend(_U.toISI([_N.where(dN == 1)[0].tolist()])[0])

    savesetMT(TR, alldat, model, setname)
    savesetMTnosc(TR, probNOsc, setname)

    arfs = ""
    xlst = []
    if bGenOscUsingAR:
        for nr in xrange(nRhythms):
            arfs += "%.1fHz " % (500 * ths[nr] / _N.pi)
            xlst.append(x[nr])
    else:
        xlst.append(x[0])
    sTitle = "AR2 freq %(fs)s    spk Hz %(spkf).1fHz   TR=%(tr)d   N=%(N)d" % {
        "spkf": (_N.sum(spksPT) / (N * TR * 0.001)),
        "tr": TR,
        "N": N,
        "fs": arfs
    }

    plotWFandSpks(N - 1,
                  dN,
                  xlst,
                  sTitle=sTitle,
                  sFilename=resFN("generative", dir=setname))

    fig = _plt.figure(figsize=(8, 4))
    _plt.hist(isis, bins=range(100), color="black")
    _plt.grid()
    _plt.savefig(resFN("ISIhist", dir=setname))
    _plt.close()

    fig = _plt.figure(figsize=(13, 4))
    _plt.plot(spksPT, marker=".", color="black", ms=8)
    _plt.ylim(0, max(spksPT) * 1.1)
    _plt.grid()
    _plt.suptitle("avg. Hz %.1f" % (_N.mean(spksPT) / (N * 0.001)))
    _plt.savefig(resFN("spksPT", dir=setname))
    _plt.close()

    if (lambda2 is None) and (absrefr > 0):
        lambda2 = _N.array([0.0001] * absrefr)
    if lambda2 is not None:
        _N.savetxt(resFN("lambda2.dat", dir=setname), lambda2, fmt="%.7f")

    #  if we want to double bin size
    #lambda2db = 0.5*(lambda2[1::2] + lambda2[::2])
    #_N.savetxt(resFN("lambda2db.dat", dir=setname), lambda2db, fmt="%.7f")
    #_plt.ion()

    if lowQpc > 0:
        _N.savetxt(resFN("lowQtrials", dir=setname), lowQs, fmt="%d")
예제 #13
0
def findMode(dmp, setname, burn, NMC, startIt=None, NB=20, NeighB=1, dir=None):
    smp_u = dmp["u"]
    smp_aS = dmp["aS"]
    fs = dmp["fs"]
    amps = dmp["amps"]
    amps = dmp["amps"]
    startIt = burn if startIt == None else startIt
    aus = _N.mean(smp_u[:, startIt:], axis=1)
    aSs = _N.mean(smp_aS[startIt:], axis=0)

    L = burn + NMC - startIt

    hist, bins = _N.histogram(
        fs[startIt:, 0],
        _N.linspace(_N.min(fs[startIt:, 0]), _N.max(fs[startIt:, 0]), NB))
    indMfs = _N.where(hist == _N.max(hist))[0][0]
    indMfsL = max(indMfs - NeighB, 0)
    indMfsH = min(indMfs + NeighB + 1, NB - 1)
    loF, hiF = bins[indMfsL], bins[indMfsH]

    hist, bins = _N.histogram(
        amps[startIt:, 0],
        _N.linspace(_N.min(amps[startIt:, 0]), _N.max(amps[startIt:, 0]), NB))
    indMamps = _N.where(hist == _N.max(hist))[0][0]
    indMampsL = max(indMamps - NeighB, 0)
    indMampsH = min(indMamps + NeighB + 1, NB)
    loA, hiA = bins[indMampsL], bins[indMampsH]

    fig = _plt.figure(figsize=(8, 8))
    fig.add_subplot(2, 1, 1)
    _plt.hist(fs[startIt:, 0],
              bins=_N.linspace(_N.min(fs[startIt:, 0]), _N.max(fs[startIt:,
                                                                  0]), NB),
              color="black")
    _plt.axvline(x=loF, color="red")
    _plt.axvline(x=hiF, color="red")
    fig.add_subplot(2, 1, 2)
    _plt.hist(amps[startIt:, 0],
              bins=_N.linspace(_N.min(amps[startIt:, 0]),
                               _N.max(amps[startIt:, 0]), NB),
              color="black")
    _plt.axvline(x=loA, color="red")
    _plt.axvline(x=hiA, color="red")
    if dir is None:
        _plt.savefig(resFN("chosenFsAmps", dir=setname))
    else:
        _plt.savefig(resFN("%s/chosenFsAmps" % dir, dir=setname))
    _plt.close()

    indsFs = _N.where((fs[startIt:, 0] >= loF) & (fs[startIt:, 0] <= hiF))
    indsAs = _N.where((amps[startIt:, 0] >= loA) & (amps[startIt:, 0] <= hiA))

    asfsInds = _N.intersect1d(indsAs[0], indsFs[0]) + startIt
    q = _N.mean(smp_q2[0, startIt:])

    #alfas = _N.mean(allalfas[asfsInds], axis=0)
    pcklme = [aus, q, allalfas[asfsInds], aSs]

    if dir is None:
        dmp = open(resFN("bestParams.pkl", dir=setname), "wb")
    else:
        dmp = open(resFN("%s/bestParams.pkl" % dir, dir=setname), "wb")
    pickle.dump(pcklme, dmp, -1)
    dmp.close()