def __init__(self): self.tokenization = Tokenization( import_module="jieba", user_dict=config.USER_DEFINED_DICT_PATH, chn_stop_words_dir=config.CHN_STOP_WORDS_PATH) self.database = Database() self.classifier = Classifier()
def __init__(self, database_name, collection_name): super(JrjSpyder, self).__init__() self.db_obj = Database() self.col = self.db_obj.conn[database_name].get_collection(collection_name) self.terminated_amount = 0 self.db_name = database_name self.col_name = collection_name self.tokenization = Tokenization(import_module="jieba", user_dict=config.USER_DEFINED_DICT_PATH)
def get_all_news_about_specific_stock(self, database_name, collection_name): # 获取collection_name的key值,看是否包含RelatedStockCodes,如果没有说明,没有做将新闻中所涉及的 # 股票代码保存在新的一列 _keys_list = list( next( self.database.get_collection(database_name, collection_name).find()).keys()) if "RelatedStockCodes" not in _keys_list: tokenization = Tokenization(import_module="jieba", user_dict="./Leorio/financedict.txt") tokenization.update_news_database_rows(database_name, collection_name) # 创建stock_code为名称的collection stock_symbol_list = self.database.get_data( config.STOCK_DATABASE_NAME, config.COLLECTION_NAME_STOCK_BASIC_INFO, keys=["symbol"])["symbol"].to_list() col_names = self.database.connect_database( config.ALL_NEWS_OF_SPECIFIC_STOCK_DATABASE).list_collection_names( session=None) for symbol in stock_symbol_list: if symbol not in col_names: _collection = self.database.get_collection( config.ALL_NEWS_OF_SPECIFIC_STOCK_DATABASE, symbol) _tmp_num_stat = 0 for row in self.database.get_collection( database_name, collection_name).find(): # 迭代器 if symbol[2:] in row["RelatedStockCodes"].split(" "): # 返回新闻发布后n天的标签 _tmp_dict = {} for label_days, key_name in self.label_range.items(): _tmp_res = self._label_news( datetime.datetime.strptime( row["Date"].split(" ")[0], "%Y-%m-%d"), symbol, label_days) _tmp_dict.update({key_name: _tmp_res}) _data = { "Date": row["Date"], "Url": row["Url"], "Title": row["Title"], "Article": row["Article"], "OriDB": database_name, "OriCOL": collection_name } _data.update(_tmp_dict) _collection.insert_one(_data) _tmp_num_stat += 1 logging.info( "there are {} news mentioned {} in {} collection need to be fetched ... " .format(_tmp_num_stat, symbol, collection_name)) else: logging.info( "{} has fetched all related news from {}...".format( symbol, collection_name)) break
def __init__(self, database_name, collection_name): super(NbdSpyder, self).__init__() self.db_obj = Database() self.col = self.db_obj.conn[database_name].get_collection(collection_name) self.terminated_amount = 0 self.db_name = database_name self.col_name = collection_name self.tokenization = Tokenization(import_module="jieba", user_dict=config.USER_DEFINED_DICT_PATH) self.redis_client = redis.StrictRedis(host=config.REDIS_IP, port=config.REDIS_PORT, db=config.CACHE_NEWS_REDIS_DB_ID)
def get_all_news_about_specific_stock(self, database_name, collection_name): # 获取collection_name的key值,看是否包含RelatedStockCodes,如果没有说明,没有做将新闻中所涉及的 # 股票代码保存在新的一列 _keys_list = list( next( self.database.get_collection(database_name, collection_name).find()).keys()) if "RelatedStockCodes" not in _keys_list: tokenization = Tokenization(import_module="jieba", user_dict="./Leorio/financedict.txt") tokenization.update_news_database_rows(database_name, collection_name) # 创建stock_code为名称的collection stock_code_list = self.database.get_data("stock", "basic_info", keys=["code" ])["code"].to_list() for code in stock_code_list: _collection = self.database.get_collection( config.ALL_NEWS_OF_SPECIFIC_STOCK_DATABASE, code) _tmp_num_stat = 0 for row in self.database.get_collection( database_name, collection_name).find(): # 迭代器 if code in row["RelatedStockCodes"].split(" "): _collection.insert_one({ "Date": row["Date"], "Url": row["Url"], "Title": row["Title"], "Article": row["Article"], "OriDB": database_name, "OriCOL": collection_name }) _tmp_num_stat += 1 logging.info( "there are {} news mentioned {} in {} collection ... ".format( _tmp_num_stat, code, collection_name))
class NbdSpyder(Spyder): def __init__(self, database_name, collection_name): super(NbdSpyder, self).__init__() self.db_obj = Database() self.col = self.db_obj.conn[database_name].get_collection( collection_name) self.terminated_amount = 0 self.db_name = database_name self.col_name = collection_name self.tokenization = Tokenization( import_module="jieba", user_dict=config.USER_DEFINED_DICT_PATH) def get_url_info(self, url): try: bs = utils.html_parser(url) except Exception: return False span_list = bs.find_all("span") part = bs.find_all("p") article = "" date = "" for span in span_list: if "class" in span.attrs and span.text and span["class"] == [ "time" ]: string = span.text.split() for dt in string: if dt.find("-") != -1: date += dt + " " elif dt.find(":") != -1: date += dt break for paragraph in part: chn_status = utils.count_chn(str(paragraph)) possible = chn_status[1] if possible > self.is_article_prob: article += str(paragraph) while article.find("<") != -1 and article.find(">") != -1: string = article[article.find("<"):article.find(">") + 1] article = article.replace(string, "") while article.find("\u3000") != -1: article = article.replace("\u3000", "") article = " ".join(re.split(" +|\n+", article)).strip() return [date, article] def get_historical_news(self, start_page=684): date_list = self.db_obj.get_data(self.db_name, self.col_name, keys=["Date"])["Date"].to_list() name_code_df = self.db_obj.get_data( config.STOCK_DATABASE_NAME, config.COLLECTION_NAME_STOCK_BASIC_INFO, keys=["name", "code"]) name_code_dict = dict(name_code_df.values) if len(date_list) == 0: # 说明没有历史数据,从头开始爬取 crawled_urls_list = [] page_urls = [ "{}/{}".format(config.WEBSITES_LIST_TO_BE_CRAWLED_NBD, page_id) for page_id in range(start_page, 0, -1) ] for page_url in page_urls: bs = utils.html_parser(page_url) a_list = bs.find_all("a") for a in a_list: if "click-statistic" in a.attrs and a.string \ and a["click-statistic"].find("Article_") != -1 \ and a["href"].find("http://www.nbd.com.cn/articles/") != -1: if a["href"] not in crawled_urls_list: result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.NBD_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config.NBD_MAX_REJECTED_AMOUNTS, config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH )) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format( a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) if not result: # 爬取失败的情况 logging.info("[FAILED] {} {}".format( a.string, a["href"])) else: # 有返回但是article为null的情况 date, article = result while article == "" and self.is_article_prob >= .1: self.is_article_prob -= .1 result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.NBD_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format( a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config. NBD_MAX_REJECTED_AMOUNTS, config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH )) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format( a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) date, article = result self.is_article_prob = .5 if article != "": related_stock_codes_list = self.tokenization.find_relevant_stock_codes_in_article( article, name_code_dict) data = { "Date": date, # "PageId": page_url.split("/")[-1], "Url": a["href"], "Title": a.string, "Article": article, "RelatedStockCodes": " ".join(related_stock_codes_list) } # self.col.insert_one(data) self.db_obj.insert_data( self.db_name, self.col_name, data) logging.info("[SUCCESS] {} {} {}".format( date, a.string, a["href"])) else: is_stop = False start_date = max(date_list) page_start_id = 1 while not is_stop: page_url = "{}/{}".format( config.WEBSITES_LIST_TO_BE_CRAWLED_NBD, page_start_id) bs = utils.html_parser(page_url) a_list = bs.find_all("a") for a in a_list: if "click-statistic" in a.attrs and a.string \ and a["click-statistic"].find("Article_") != -1 \ and a["href"].find("http://www.nbd.com.cn/articles/") != -1: result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.NBD_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config.NBD_MAX_REJECTED_AMOUNTS, config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH)) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format( a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) if not result: # 爬取失败的情况 logging.info("[FAILED] {} {}".format( a.string, a["href"])) else: # 有返回但是article为null的情况 date, article = result if date > start_date: while article == "" and self.is_article_prob >= .1: self.is_article_prob -= .1 result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.NBD_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format( a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config. NBD_MAX_REJECTED_AMOUNTS, config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH )) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format( a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) date, article = result self.is_article_prob = .5 if article != "": related_stock_codes_list = self.tokenization.find_relevant_stock_codes_in_article( article, name_code_dict) data = { "Date": date, "Url": a["href"], "Title": a.string, "Article": article, "RelatedStockCodes": " ".join(related_stock_codes_list) } self.db_obj.insert_data( self.db_name, self.col_name, data) logging.info("[SUCCESS] {} {} {}".format( date, a.string, a["href"])) else: is_stop = True break if not is_stop: page_start_id += 1 def get_realtime_news(self, interval=60): page_url = "{}/1".format(config.WEBSITES_LIST_TO_BE_CRAWLED_NBD) logging.info( "start real-time crawling of URL -> {}, request every {} secs ... " .format(page_url, interval)) name_code_df = self.db_obj.get_data( config.STOCK_DATABASE_NAME, config.COLLECTION_NAME_STOCK_BASIC_INFO, keys=["name", "code"]) name_code_dict = dict(name_code_df.values) crawled_urls = [] date_list = self.db_obj.get_data(self.db_name, self.col_name, keys=["Date"])["Date"].to_list() latest_date = max(date_list) while True: # 每隔一定时间轮询该网址 if len(crawled_urls) > 100: # 防止list过长,内存消耗大,维持list在100条 crawled_urls.pop(0) bs = utils.html_parser(page_url) a_list = bs.find_all("a") for a in a_list: if "click-statistic" in a.attrs and a.string \ and a["click-statistic"].find("Article_") != -1 \ and a["href"].find("http://www.nbd.com.cn/articles/") != -1: if a["href"] not in crawled_urls: result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.NBD_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config.NBD_MAX_REJECTED_AMOUNTS, config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH)) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format( a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) if not result: # 爬取失败的情况 logging.info("[FAILED] {} {}".format( a.string, a["href"])) else: # 有返回但是article为null的情况 date, article = result if date > latest_date: while article == "" and self.is_article_prob >= .1: self.is_article_prob -= .1 result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.NBD_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format( a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config. NBD_MAX_REJECTED_AMOUNTS, config. RECORD_NBD_FAILED_URL_TXT_FILE_PATH )) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format( a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) date, article = result self.is_article_prob = .5 if article != "": related_stock_codes_list = self.tokenization.find_relevant_stock_codes_in_article( article, name_code_dict) data = { "Date": date, # "PageId": page_url.split("/")[-1], "Url": a["href"], "Title": a.string, "Article": article, "RelatedStockCodes": " ".join(related_stock_codes_list) } # self.col.insert_one(data) self.db_obj.insert_data( self.db_name, self.col_name, data) crawled_urls.append(a["href"]) logging.info("[SUCCESS] {} {} {}".format( date, a.string, a["href"])) # logging.info("sleep {} secs then request again ... ".format(interval)) time.sleep(interval)
class TopicModelling(object): def __init__(self): self.tokenization = Tokenization( import_module="jieba", user_dict=config.USER_DEFINED_DICT_PATH, chn_stop_words_dir=config.CHN_STOP_WORDS_PATH) self.database = Database() self.classifier = Classifier() def create_dictionary(self, raw_documents_list, save_path=None, is_saved=False): """ 将文中每个词汇关联唯一的ID,因此需要定义词汇表 :param: raw_documents_list, 原始语料列表,每个元素即文本,如["洗尽铅华...", "风雨赶路人...", ...] :param: savepath, corpora.Dictionary对象保存路径 """ documents_token_list = [] for doc in raw_documents_list: documents_token_list.append(self.tokenization.cut_words(doc)) _dict = corpora.Dictionary(documents_token_list) # 找到只出现一次的token once_items = [ _dict[tokenid] for tokenid, docfreq in _dict.dfs.items() if docfreq == 1 ] # 在documents_token_list的每一条语料中,删除只出现一次的token for _id, token_list in enumerate(documents_token_list): documents_token_list[_id] = list( filter(lambda token: token not in once_items, token_list)) # 极端情况,某一篇语料所有token只出现一次,这样该篇新闻语料的token列表就变为空,因此删除掉 documents_token_list = [ token_list for token_list in documents_token_list if (len(token_list) != 0) ] # 找到只出现一次的token对应的id once_ids = [ tokenid for tokenid, docfreq in _dict.dfs.items() if docfreq == 1 ] # 删除仅出现一次的词 _dict.filter_tokens(once_ids) # 消除id序列在删除词后产生的不连续的缺口 _dict.compactify() if is_saved and save_path: _dict.save(save_path) logging.info( "new generated dictionary saved in path -> {} ...".format( save_path)) return _dict, documents_token_list def renew_dictionary(self, old_dict_path, new_raw_documents_list, new_dict_path=None, is_saved=False): documents_token_list = [] for doc in new_raw_documents_list: documents_token_list.append(self.tokenization.cut_words(doc)) _dict = corpora.Dictionary.load(old_dict_path) _dict.add_documents(documents_token_list) if new_dict_path: old_dict_path = new_dict_path if is_saved: _dict.save(old_dict_path) logging.info( "updated dictionary by another raw documents serialized in {} ... " .format(old_dict_path)) return _dict, documents_token_list def create_bag_of_word_representation(self, raw_documents_list, old_dict_path=None, new_dict_path=None, bow_vector_save_path=None, is_saved_dict=False): if old_dict_path: # 如果存在旧的语料词典,就在原先词典的基础上更新,增加未见过的词 corpora_dictionary, documents_token_list = self.renew_dictionary( old_dict_path, raw_documents_list, new_dict_path=new_dict_path) else: # 否则重新创建词典 start_time = time.time() corpora_dictionary, documents_token_list = self.create_dictionary( raw_documents_list, save_path=new_dict_path, is_saved=is_saved_dict) end_time = time.time() logging.info( "there are {} mins spent to create a new dictionary ... ". format((end_time - start_time) / 60)) # 根据新词典对文档(或语料)生成对应的词袋向量 start_time = time.time() bow_vector = [ corpora_dictionary.doc2bow(doc_token) for doc_token in documents_token_list ] end_time = time.time() logging.info( "there are {} mins spent to calculate bow-vector ... ".format( (end_time - start_time) / 60)) if bow_vector_save_path: corpora.MmCorpus.serialize(bow_vector_save_path, bow_vector) return documents_token_list, corpora_dictionary, bow_vector @staticmethod def transform_vectorized_corpus(corpora_dictionary, bow_vector, model_type="lda", model_save_path=None): # 如何没有保存任何模型,重新训练的情况下,可以选择该函数 model_vector = None if model_type == "lsi": # LSI(Latent Semantic Indexing)模型,将文本从词袋向量或者词频向量(更好),转为一个低维度的latent空间 # 对于现实语料,目标维度在200-500被认为是"黄金标准" model_tfidf = models.TfidfModel(bow_vector) # model_tfidf.save("model_tfidf.tfidf") tfidf_vector = model_tfidf[bow_vector] model = models.LsiModel(tfidf_vector, id2word=corpora_dictionary, num_topics=config.TOPIC_NUMBER) # 初始化模型 model_vector = model[tfidf_vector] if model_save_path: model.save(model_save_path) elif model_type == "lda": model = models.LdaModel(bow_vector, id2word=corpora_dictionary, num_topics=config.TOPIC_NUMBER) # 初始化模型 model_vector = model[bow_vector] if model_save_path: model.save(model_save_path) elif model_type == "tfidf": model = models.TfidfModel(bow_vector) # 初始化 # model = models.TfidfModel.load("model_tfidf.tfidf") model_vector = model[bow_vector] # 将整个语料进行转换 if model_save_path: model.save(model_save_path) return model_vector def classify_stock_news(self, unseen_raw_document, database_name, collection_name, label_name="60DaysLabel", topic_model_type="lda", classifier_model="svm", ori_dict_path=None, bowvec_save_path=None, is_saved_bow_vector=False): historical_raw_documents_list = [] Y = [] for row in self.database.get_collection(database_name, collection_name).find(): if label_name in row.keys(): if row[label_name] != "": historical_raw_documents_list.append(row["Article"]) Y.append(row[label_name]) logging.info( "fetch symbol '{}' historical news with label '{}' from [DB:'{}' - COL:'{}'] ... " .format(collection_name, label_name, database_name, collection_name)) le = preprocessing.LabelEncoder() Y = le.fit_transform(Y) logging.info( "encode historical label list by sklearn preprocessing for training ... " ) label_name_list = le.classes_ # ['中性' '利好' '利空'] -> [0, 1, 2] # 根据历史新闻数据库创建词典,以及计算每个历史新闻的词袋向量;如果历史数据库创建的字典存在,则加载进内存 # 用未见过的新闻tokens去更新该词典 if not os.path.exists(ori_dict_path): if not os.path.exists(bowvec_save_path): _, _, historical_bow_vec = self.create_bag_of_word_representation( historical_raw_documents_list, new_dict_path=ori_dict_path, bow_vector_save_path=bowvec_save_path, is_saved_dict=True) logging.info( "create dictionary of historical news, and serialized in path -> {} ... " .format(ori_dict_path)) logging.info( "create bow-vector of historical news, and serialized in path -> {} ... " .format(bowvec_save_path)) else: _, _, _ = self.create_bag_of_word_representation( historical_raw_documents_list, new_dict_path=ori_dict_path, is_saved_dict=True) logging.info( "create dictionary of historical news, and serialized in path -> {} ... " .format(ori_dict_path)) else: if not os.path.exists(bowvec_save_path): _, _, historical_bow_vec = self.create_bag_of_word_representation( historical_raw_documents_list, new_dict_path=ori_dict_path, bow_vector_save_path=bowvec_save_path, is_saved_dict=True) logging.info( "historical news dictionary existed, which saved in path -> {}, but not the historical bow-vector" " ... ".format(ori_dict_path)) else: historical_bow_vec_mmcorpus = corpora.MmCorpus( bowvec_save_path ) # type -> <gensim.corpora.mmcorpus.MmCorpus> historical_bow_vec = [] for _bow in historical_bow_vec_mmcorpus: historical_bow_vec.append(_bow) logging.info( "both historical news dictionary and bow-vector existed, load historical bow-vector to memory ... " ) start_time = time.time() updated_dictionary_with_old_and_unseen_news, unssen_documents_token_list = self.renew_dictionary( ori_dict_path, [unseen_raw_document], is_saved=True) end_time = time.time() logging.info( "renew dictionary with unseen news tokens, and serialized in path -> {}, " "which took {} mins ... ".format(ori_dict_path, (end_time - start_time) / 60)) unseen_bow_vector = [ updated_dictionary_with_old_and_unseen_news.doc2bow(doc_token) for doc_token in unssen_documents_token_list ] updated_bow_vector_with_old_and_unseen_news = [] updated_bow_vector_with_old_and_unseen_news.extend(historical_bow_vec) updated_bow_vector_with_old_and_unseen_news.extend(unseen_bow_vector) # 原先updated_bow_vector_with_old_and_unseen_news是list类型, # 但是经过下面序列化后重新加载进来的类型是gensim.corpora.mmcorpus.MmCorpus if is_saved_bow_vector and bowvec_save_path: corpora.MmCorpus.serialize( bowvec_save_path, updated_bow_vector_with_old_and_unseen_news ) # 保存更新后的bow向量,即包括新旧新闻的bow向量集 logging.info( "combined bow vector(type -> 'list') generated by historical news with unseen bow " "vector to create a new one ... ") if topic_model_type == "lsi": start_time = time.time() updated_tfidf_model_vector = self.transform_vectorized_corpus( updated_dictionary_with_old_and_unseen_news, updated_bow_vector_with_old_and_unseen_news, model_type="tfidf" ) # type -> <gensim.interfaces.TransformedCorpus object> end_time = time.time() logging.info( "regenerated TF-IDF model vector by updated dictionary and updated bow-vector, " "which took {} mins ... ".format((end_time - start_time) / 60)) start_time = time.time() model = models.LsiModel( updated_tfidf_model_vector, id2word=updated_dictionary_with_old_and_unseen_news, num_topics=config.TOPIC_NUMBER) # 初始化模型 model_vector = model[ updated_tfidf_model_vector] # type -> <gensim.interfaces.TransformedCorpus object> end_time = time.time() logging.info( "regenerated LSI model vector space by updated TF-IDF model vector space, " "which took {} mins ... ".format((end_time - start_time) / 60)) elif topic_model_type == "lda": start_time = time.time() model_vector = self.transform_vectorized_corpus( updated_dictionary_with_old_and_unseen_news, updated_bow_vector_with_old_and_unseen_news, model_type="lda") end_time = time.time() logging.info( "regenerated LDA model vector space by updated dictionary and bow-vector, " "which took {} mins ... ".format((end_time - start_time) / 60)) # 将gensim.interfaces.TransformedCorpus类型的lsi模型向量转为numpy矩阵 start_time = time.time() latest_matrix = corpus2dense(model_vector, num_terms=model_vector.obj.num_terms).T end_time = time.time() logging.info( "transform {} model vector space to numpy.adarray, " "which took {} mins ... ".format(topic_model_type.upper(), (end_time - start_time) / 60)) # 利用历史数据的话题模型向量(或特征),进一步训练新闻分类器 start_time = time.time() train_x, train_y, test_x, test_y = utils.generate_training_set( latest_matrix[:-1, :], Y) clf = self.classifier.train(train_x, train_y, test_x, test_y, model_type=classifier_model) end_time = time.time() logging.info( "finished training by sklearn {} using latest {} model vector space, which took {} mins ... " .format(classifier_model.upper(), topic_model_type.upper(), (end_time - start_time) / 60)) label_id = clf.predict(latest_matrix[-1, :].reshape(1, -1))[0] return label_name_list[label_id]
class TopicModelling(object): def __init__(self): self.tokenization = Tokenization( import_module="jieba", user_dict=config.USER_DEFINED_DICT_PATH, chn_stop_words_dir=config.CHN_STOP_WORDS_PATH) def create_dictionary(self, raw_documents_list, savepath=None): """ 将文中每个词汇关联唯一的ID,因此需要定义词汇表 :param: raw_documents_list, 原始语料列表,每个元素即文本,如["洗尽铅华...", "风雨赶路人...", ...] :param: savepath, corpora.Dictionary对象保存路径 """ documents_token_list = [] for doc in raw_documents_list: documents_token_list.append(self.tokenization.cut_words(doc)) _dict = corpora.Dictionary(documents_token_list) # 找到只出现一次的token once_items = [ _dict[tokenid] for tokenid, docfreq in _dict.dfs.items() if docfreq == 1 ] # 在documents_token_list的每一条语料中,删除只出现一次的token for _id, token_list in enumerate(documents_token_list): documents_token_list[_id] = list( filter(lambda token: token not in once_items, token_list)) # 极端情况,某一篇语料所有token只出现一次,这样该篇新闻语料的token列表就变为空,因此删除掉 documents_token_list = [ token_list for token_list in documents_token_list if (len(token_list) != 0) ] # 找到只出现一次的token对应的id once_ids = [ tokenid for tokenid, docfreq in _dict.dfs.items() if docfreq == 1 ] # 删除仅出现一次的词 _dict.filter_tokens(once_ids) # 消除id序列在删除词后产生的不连续的缺口 _dict.compactify() if savepath: _dict.save(savepath) return _dict, documents_token_list def create_bag_of_word_representation(self, raw_documents_list, dict_save_path=None, bow_vector_save_path=None): corpora_dictionary, documents_token_list = self.create_dictionary( raw_documents_list, savepath=dict_save_path) bow_vector = [ corpora_dictionary.doc2bow(doc_token) for doc_token in documents_token_list ] if bow_vector_save_path: corpora.MmCorpus.serialize(bow_vector_save_path, bow_vector) return documents_token_list, corpora_dictionary, bow_vector def transform_vectorized_corpus(self, corpora_dictionary, bow_vector, model_type="lda", model_save_path=None): # 如何没有保存任何模型,重新训练的情况下,可以选择该函数 model_vector = None if model_type == "lsi": # LSI(Latent Semantic Indexing)模型,将文本从词袋向量或者词频向量(更好),转为一个低维度的latent空间 # 对于现实语料,目标维度在200-500被认为是"黄金标准" tfidf_vector = models.TfidfModel(bow_vector)[bow_vector] model = models.LsiModel(tfidf_vector, id2word=corpora_dictionary, num_topics=config.TOPIC_NUMBER) # 初始化模型 model_vector = model[tfidf_vector] if model_save_path: model.save(model_save_path) elif model_type == "lda": model = models.LdaModel(bow_vector, id2word=corpora_dictionary, num_topics=config.TOPIC_NUMBER) # 初始化模型 model_vector = model[bow_vector] if model_save_path: model.save(model_save_path) elif model_type == "tfidf": model = models.TfidfModel(bow_vector) # 初始化 model_vector = model[bow_vector] # 将整个语料进行转换 if model_save_path: model.save(model_save_path) return model_vector def add_documents_to_serialized_model(self, old_model_path, another_raw_documents_list, latest_model_path=None, model_type="lsi"): # 加载已有的模型,Gensim提供在线学习的模式,不断基于新的documents训练新的模型 if not os.path.exists(old_model_path): raise Exception( "the file path {} does not exist ... ".format(old_model_path)) if model_type == "lsi": loaded_model = models.LsiModel.load(old_model_path) elif model_type == "lda": loaded_model = models.LdaModel.load(old_model_path) # loaded_model.add_documents(another_tfidf_corpus) if latest_model_path: old_model_path = latest_model_path loaded_model.save(old_model_path) def load_transform_model(self, model_path): if ".tfidf" in model_path: return models.TfidfModel.load(model_path) elif ".lsi" in model_path: return models.LsiModel.load(model_path) elif ".lda" in model_path: return models.LdaModel.load(model_path)
# for url_to_be_crawled, type_chn in config.WEBSITES_LIST_TO_BE_CRAWLED_CNSTOCK.items(): # logging.info("start crawling {} ...".format(url_to_be_crawled)) # cnstock_spyder.get_historical_news(url_to_be_crawled, category_chn=type_chn) # logging.info("finished ...") # time.sleep(30) # # jrj_spyder = JrjSpyder(config.DATABASE_NAME, config.COLLECTION_NAME_JRJ) # jrj_spyder.get_historical_news(config.WEBSITES_LIST_TO_BE_CRAWLED_JRJ, "2020-12-04", "2020-12-08") # # nbd_spyder = NbdSpyder(config.DATABASE_NAME, config.COLLECTION_NAME_NBD) # nbd_spyder.get_historical_news(684) # 2. 抽取出新闻中所涉及的股票,并保存其股票代码在collection中新的一列 from Leorio.tokenization import Tokenization tokenization = Tokenization(import_module="jieba", user_dict="./Leorio/financedict.txt") tokenization.update_news_database_rows(config.DATABASE_NAME, "cnstock") # tokenization.update_news_database_rows(config.DATABASE_NAME, "nbd") # tokenization.update_news_database_rows(config.DATABASE_NAME, "jrj") # 3. 针对历史数据进行去重清洗 from Killua.deduplication import Deduplication Deduplication("finnewshunter", "cnstock").run() # Deduplication("finnewshunter", "nbd").run() # Deduplication("finnewshunter", "jrj").run() # 暂时只有jrj需要去重 # 4. 将历史数据中包含null值的行去掉 from Killua.denull import DeNull # DeNull("finnewshunter", "cnstock").run()
class CnStockSpyder(Spyder): def __init__(self, database_name, collection_name): super(CnStockSpyder, self).__init__() self.db_obj = Database() self.col = self.db_obj.conn[database_name].get_collection( collection_name) self.terminated_amount = 0 self.db_name = database_name self.col_name = collection_name self.tokenization = Tokenization( import_module="jieba", user_dict=config.USER_DEFINED_DICT_PATH) self.redis_client = redis.StrictRedis(host=config.REDIS_IP, port=config.REDIS_PORT, db=config.CACHE_NEWS_REDIS_DB_ID) def get_url_info(self, url): try: bs = utils.html_parser(url) except Exception: return False span_list = bs.find_all("span") part = bs.find_all("p") article = "" date = "" for span in span_list: if "class" in span.attrs and span["class"] == ["timer"]: date = span.text break for paragraph in part: chn_status = utils.count_chn(str(paragraph)) possible = chn_status[1] if possible > self.is_article_prob: article += str(paragraph) while article.find("<") != -1 and article.find(">") != -1: string = article[article.find("<"):article.find(">") + 1] article = article.replace(string, "") while article.find("\u3000") != -1: article = article.replace("\u3000", "") article = " ".join(re.split(" +|\n+", article)).strip() return [date, article] def get_historical_news(self, url, category_chn=None, start_date=None): """ :param url: 爬虫网页 :param category_chn: 所属类别, 中文字符串, 包括'公司聚焦', '公告解读', '公告快讯', '利好公告' :param start_date: 数据库中category_chn类别新闻最近一条数据的时间 """ assert category_chn is not None driver = webdriver.Chrome(executable_path=config.CHROME_DRIVER) btn_more_text = "" crawled_urls_list = self.extract_data(["Url"])[0] logging.info("historical data length -> {} ... ".format( len(crawled_urls_list))) # crawled_urls_list = [] driver.get(url) name_code_df = self.db_obj.get_data( config.STOCK_DATABASE_NAME, config.COLLECTION_NAME_STOCK_BASIC_INFO, keys=["name", "code"]) name_code_dict = dict(name_code_df.values) if start_date is None: while btn_more_text != "没有更多": more_btn = driver.find_element_by_id('j_more_btn') btn_more_text = more_btn.text logging.info("1-{}".format(more_btn.text)) if btn_more_text == "加载更多": more_btn.click() time.sleep(random.random()) # sleep random time less 1s elif btn_more_text == "加载中...": time.sleep(random.random() + 2) more_btn = driver.find_element_by_id('j_more_btn') btn_more_text = more_btn.text logging.info("2-{}".format(more_btn.text)) if btn_more_text == "加载更多": more_btn.click() else: more_btn.click() break bs = BeautifulSoup(driver.page_source, "html.parser") for li in bs.find_all("li", attrs={"class": ["newslist"]}): a = li.find_all("h2")[0].find("a") if a["href"] not in crawled_urls_list: result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.CNSTOCK_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config.CNSTOCK_MAX_REJECTED_AMOUNTS, config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH)) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format(a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) if not result: # 爬取失败的情况 logging.info("[FAILED] {} {}".format( a["title"], a["href"])) else: # 有返回但是article为null的情况 date, article = result while article == "" and self.is_article_prob >= .1: self.is_article_prob -= .1 result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.CNSTOCK_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config. CNSTOCK_MAX_REJECTED_AMOUNTS, config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH )) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format( a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) date, article = result self.is_article_prob = .5 if article != "": related_stock_codes_list = self.tokenization.find_relevant_stock_codes_in_article( article, name_code_dict) data = { "Date": date, "Category": category_chn, "Url": a["href"], "Title": a["title"], "Article": article, "RelatedStockCodes": " ".join(related_stock_codes_list) } # self.col.insert_one(data) self.db_obj.insert_data(self.db_name, self.col_name, data) logging.info("[SUCCESS] {} {} {}".format( date, a["title"], a["href"])) else: # 当start_date不为None时,补充历史数据 is_click_button = True start_get_url_info = False tmp_a = None while is_click_button: bs = BeautifulSoup(driver.page_source, "html.parser") for li in bs.find_all("li", attrs={"class": ["newslist"]}): a = li.find_all("h2")[0].find("a") if tmp_a is not None and a["href"] != tmp_a: continue elif tmp_a is not None and a["href"] == tmp_a: start_get_url_info = True if start_get_url_info: date, _ = self.get_url_info(a["href"]) if date <= start_date: is_click_button = False break tmp_a = a["href"] if is_click_button: more_btn = driver.find_element_by_id('j_more_btn') more_btn.click() # 从一开始那条新闻到tmp_a都是新增新闻,不包括tmp_a bs = BeautifulSoup(driver.page_source, "html.parser") for li in bs.find_all("li", attrs={"class": ["newslist"]}): a = li.find_all("h2")[0].find("a") if a["href"] != tmp_a: result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.CNSTOCK_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config.CNSTOCK_MAX_REJECTED_AMOUNTS, config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH)) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format(a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) if not result: # 爬取失败的情况 logging.info("[FAILED] {} {}".format( a["title"], a["href"])) else: # 有返回但是article为null的情况 date, article = result while article == "" and self.is_article_prob >= .1: self.is_article_prob -= .1 result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.CNSTOCK_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config. CNSTOCK_MAX_REJECTED_AMOUNTS, config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH )) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format( a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) date, article = result self.is_article_prob = .5 if article != "": related_stock_codes_list = self.tokenization.find_relevant_stock_codes_in_article( article, name_code_dict) data = { "Date": date, "Category": category_chn, "Url": a["href"], "Title": a["title"], "Article": article, "RelatedStockCodes": " ".join(related_stock_codes_list) } # self.col.insert_one(data) self.db_obj.insert_data(self.db_name, self.col_name, data) logging.info("[SUCCESS] {} {} {}".format( date, a["title"], a["href"])) else: break driver.quit() def get_realtime_news(self, url, category_chn=None, interval=60): logging.info( "start real-time crawling of URL -> {}, request every {} secs ... " .format(url, interval)) assert category_chn is not None # TODO: 由于cnstock爬取的数据量并不大,这里暂时是抽取历史所有数据进行去重,之后会修改去重策略 name_code_df = self.db_obj.get_data( config.STOCK_DATABASE_NAME, config.COLLECTION_NAME_STOCK_BASIC_INFO, keys=["name", "code"]) name_code_dict = dict(name_code_df.values) crawled_urls = self.db_obj.get_data(self.db_name, self.col_name, keys=["Url"])["Url"].to_list() while True: # 每隔一定时间轮询该网址 bs = utils.html_parser(url) for li in bs.find_all("li", attrs={"class": ["newslist"]}): a = li.find_all("h2")[0].find("a") if a["href"] not in crawled_urls: # latest_3_days_crawled_href result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.CNSTOCK_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config.CNSTOCK_MAX_REJECTED_AMOUNTS, config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH)) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format(a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) if not result: # 爬取失败的情况 logging.info("[FAILED] {} {}".format( a["title"], a["href"])) else: # 有返回但是article为null的情况 date, article = result while article == "" and self.is_article_prob >= .1: self.is_article_prob -= .1 result = self.get_url_info(a["href"]) while not result: self.terminated_amount += 1 if self.terminated_amount > config.CNSTOCK_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open( config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info( "rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format( config. CNSTOCK_MAX_REJECTED_AMOUNTS, config. RECORD_CNSTOCK_FAILED_URL_TXT_FILE_PATH )) break logging.info( "rejected by remote server, request {} again after " "{} seconds...".format( a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"]) date, article = result self.is_article_prob = .5 if article != "": related_stock_codes_list = self.tokenization.find_relevant_stock_codes_in_article( article, name_code_dict) self.db_obj.insert_data( self.db_name, self.col_name, { "Date": date, "Category": category_chn, "Url": a["href"], "Title": a["title"], "Article": article, "RelatedStockCodes": " ".join(related_stock_codes_list) }) self.redis_client.lpush( config.CACHE_NEWS_LIST_NAME, json.dumps({ "Date": date, "Category": category_chn, "Url": a["href"], "Title": a["title"], "Article": article, "RelatedStockCodes": " ".join(related_stock_codes_list), "OriDB": config.DATABASE_NAME, "OriCOL": config.COLLECTION_NAME_CNSTOCK })) logging.info("[SUCCESS] {} {} {}".format( date, a["title"], a["href"])) crawled_urls.append(a["href"]) # logging.info("sleep {} secs then request {} again ... ".format(interval, url)) time.sleep(interval)
class JrjSpyder(Spyder): def __init__(self, database_name, collection_name): super(JrjSpyder, self).__init__() self.db_obj = Database() self.col = self.db_obj.conn[database_name].get_collection(collection_name) self.terminated_amount = 0 self.db_name = database_name self.col_name = collection_name self.tokenization = Tokenization(import_module="jieba", user_dict=config.USER_DEFINED_DICT_PATH) def get_url_info(self, url, specific_date): try: bs = utils.html_parser(url) except Exception: return False date = "" for span in bs.find_all("span"): if span.contents[0] == "jrj_final_date_start": date = span.text.replace("\r", "").replace("\n", "") break if date == "": date = specific_date article = "" for p in bs.find_all("p"): if not p.find_all("jrj_final_daohang_start") and p.attrs == {} and \ not p.find_all("input") and not p.find_all("a", attrs={"class": "red"}) and not p.find_all("i") and not p.find_all("span"): # if p.contents[0] != "jrj_final_daohang_start1" and p.attrs == {} and \ # not p.find_all("input") and not p.find_all("a", attrs={"class": "red"}) and not p.find_all("i"): article += p.text.replace("\r", "").replace("\n", "").replace("\u3000", "") return [date, article] def get_historical_news(self, url, start_date=None, end_date=None): name_code_df = self.db_obj.get_data(config.STOCK_DATABASE_NAME, config.COLLECTION_NAME_STOCK_BASIC_INFO, keys=["name", "code"]) name_code_dict = dict(name_code_df.values) crawled_urls_list = [] if end_date is None: end_date = datetime.datetime.now().strftime("%Y-%m-%d") if start_date is None: # 如果start_date是None,则从历史数据库最新的日期补充爬取到最新日期 # e.g. history_latest_date_str -> "2020-12-08" # history_latest_date_dt -> datetime.date(2020, 12, 08) # start_date -> "2020-12-09" history_latest_date_list = self.db_obj.get_data(self.db_name, self.col_name, keys=["Date"])["Date"].to_list() if len(history_latest_date_list) != 0: history_latest_date_str = max(history_latest_date_list).split(" ")[0] history_latest_date_dt = datetime.datetime.strptime(history_latest_date_str, "%Y-%m-%d").date() offset = datetime.timedelta(days=1) start_date = (history_latest_date_dt + offset).strftime('%Y-%m-%d') else: start_date = config.JRJ_REQUEST_DEFAULT_DATE dates_list = utils.get_date_list_from_range(start_date, end_date) dates_separated_into_ranges_list = utils.gen_dates_list(dates_list, config.JRJ_DATE_RANGE) for dates_range in dates_separated_into_ranges_list: for date in dates_range: first_url = "{}/{}/{}_1.shtml".format(url, date.replace("-", "")[0:6], date.replace("-", "")) max_pages_num = utils.search_max_pages_num(first_url, date) for num in range(1, max_pages_num + 1): _url = "{}/{}/{}_{}.shtml".format(url, date.replace("-", "")[0:6], date.replace("-", ""), str(num)) bs = utils.html_parser(_url) a_list = bs.find_all("a") for a in a_list: if "href" in a.attrs and a.string and \ a["href"].find("/{}/{}/".format(date.replace("-", "")[:4], date.replace("-", "")[4:6])) != -1: if a["href"] not in crawled_urls_list: # 如果标题不包含"收盘","报于"等字样,即可写入数据库,因为包含这些字样标题的新闻多为机器自动生成 if a.string.find("收盘") == -1 and a.string.find("报于") == -1 and \ a.string.find("新三板挂牌上市") == -1: result = self.get_url_info(a["href"], date) while not result: self.terminated_amount += 1 if self.terminated_amount > config.JRJ_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open(config.RECORD_JRJ_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info("rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format(config.JRJ_MAX_REJECTED_AMOUNTS, config.RECORD_JRJ_FAILED_URL_TXT_FILE_PATH)) break logging.info("rejected by remote server, request {} again after " "{} seconds...".format(a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"], date) if not result: # 爬取失败的情况 logging.info("[FAILED] {} {}".format(a.string, a["href"])) else: # 有返回但是article为null的情况 article_specific_date, article = result while article == "" and self.is_article_prob >= .1: self.is_article_prob -= .1 result = self.get_url_info(a["href"], date) while not result: self.terminated_amount += 1 if self.terminated_amount > config.JRJ_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open(config.RECORD_JRJ_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info("rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format(config.JRJ_MAX_REJECTED_AMOUNTS, config.RECORD_JRJ_FAILED_URL_TXT_FILE_PATH)) break logging.info("rejected by remote server, request {} again after " "{} seconds...".format(a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"], date) article_specific_date, article = result self.is_article_prob = .5 if article != "": related_stock_codes_list = self.tokenization.find_relevant_stock_codes_in_article(article, name_code_dict) data = {"Date": article_specific_date, "Url": a["href"], "Title": a.string, "Article": article, "RelatedStockCodes": " ".join(related_stock_codes_list)} # self.col.insert_one(data) self.db_obj.insert_data(self.db_name, self.col_name, data) logging.info("[SUCCESS] {} {} {}".format(article_specific_date, a.string, a["href"])) self.terminated_amount = 0 # 爬取结束后重置该参数 else: logging.info("[QUIT] {}".format(a.string)) def get_realtime_news(self, interval=60): name_code_df = self.db_obj.get_data(config.STOCK_DATABASE_NAME, config.COLLECTION_NAME_STOCK_BASIC_INFO, keys=["name", "code"]) name_code_dict = dict(name_code_df.values) crawled_urls_list = [] is_change_date = False last_date = datetime.datetime.now().strftime("%Y-%m-%d") while True: today_date = datetime.datetime.now().strftime("%Y-%m-%d") if today_date != last_date: is_change_date = True last_date = today_date if is_change_date: crawled_urls_list = [] is_change_date = False _url = "{}/{}/{}_1.shtml".format(config.WEBSITES_LIST_TO_BE_CRAWLED_JRJ, today_date.replace("-", "")[0:6], today_date.replace("-", "")) max_pages_num = utils.search_max_pages_num(_url, today_date) for num in range(1, max_pages_num + 1): _url = "{}/{}/{}_{}.shtml".format(config.WEBSITES_LIST_TO_BE_CRAWLED_JRJ, today_date.replace("-", "")[0:6], today_date.replace("-", ""), str(num)) bs = utils.html_parser(_url) a_list = bs.find_all("a") for a in a_list: if "href" in a.attrs and a.string and \ a["href"].find("/{}/{}/".format(today_date.replace("-", "")[:4], today_date.replace("-", "")[4:6])) != -1: if a["href"] not in crawled_urls_list: # 如果标题不包含"收盘","报于"等字样,即可写入数据库,因为包含这些字样标题的新闻多为机器自动生成 if a.string.find("收盘") == -1 and a.string.find("报于") == -1 and \ a.string.find("新三板挂牌上市") == -1: result = self.get_url_info(a["href"], today_date) while not result: self.terminated_amount += 1 if self.terminated_amount > config.JRJ_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open(config.RECORD_JRJ_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info("rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format(config.JRJ_MAX_REJECTED_AMOUNTS, config.RECORD_JRJ_FAILED_URL_TXT_FILE_PATH)) break logging.info("rejected by remote server, request {} again after " "{} seconds...".format(a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"], today_date) if not result: # 爬取失败的情况 logging.info("[FAILED] {} {}".format(a.string, a["href"])) else: # 有返回但是article为null的情况 article_specific_date, article = result while article == "" and self.is_article_prob >= .1: self.is_article_prob -= .1 result = self.get_url_info(a["href"], today_date) while not result: self.terminated_amount += 1 if self.terminated_amount > config.JRJ_MAX_REJECTED_AMOUNTS: # 始终无法爬取的URL保存起来 with open(config.RECORD_JRJ_FAILED_URL_TXT_FILE_PATH, "a+") as file: file.write("{}\n".format(a["href"])) logging.info("rejected by remote server longer than {} minutes, " "and the failed url has been written in path {}" .format(config.JRJ_MAX_REJECTED_AMOUNTS, config.RECORD_JRJ_FAILED_URL_TXT_FILE_PATH)) break logging.info("rejected by remote server, request {} again after " "{} seconds...".format(a["href"], 60 * self.terminated_amount)) time.sleep(60 * self.terminated_amount) result = self.get_url_info(a["href"], today_date) article_specific_date, article = result self.is_article_prob = .5 if article != "": related_stock_codes_list = self.tokenization.find_relevant_stock_codes_in_article(article, name_code_dict) data = {"Date": article_specific_date, "Url": a["href"], "Title": a.string, "Article": article, "RelatedStockCodes": " ".join(related_stock_codes_list)} # self.col.insert_one(data) self.db_obj.insert_data(self.db_name, self.col_name, data) logging.info("[SUCCESS] {} {} {}".format(article_specific_date, a.string, a["href"])) self.terminated_amount = 0 # 爬取结束后重置该参数 else: logging.info("[QUIT] {}".format(a.string)) crawled_urls_list.append(a["href"]) # logging.info("sleep {} secs then request again ... ".format(interval)) time.sleep(interval)
from Kite.database import Database from Kite import config from concurrent import futures import threading obj = Database() df = obj.get_data(config.DATABASE_NAME, config.COLLECTION_NAME_CNSTOCK, keys=["Date", "Category"]) cnstock_spyder = CnStockSpyder(config.DATABASE_NAME, config.COLLECTION_NAME_CNSTOCK) # 先补充历史数据,比如已爬取数据到2020-12-01,但是启动实时爬取程序在2020-12-23,则先 # 自动补充爬取2020-12-02至2020-12-23的新闻数据 for url_to_be_crawled, type_chn in config.WEBSITES_LIST_TO_BE_CRAWLED_CNSTOCK.items(): # 查询type_chn的最近一条数据的时间 latets_date_in_db = max(df[df.Category == type_chn]["Date"].to_list()) cnstock_spyder.get_historical_news(url_to_be_crawled, category_chn=type_chn, start_date=latets_date_in_db) tokenization = Tokenization(import_module="jieba", user_dict=config.USER_DEFINED_DICT_PATH) tokenization.update_news_database_rows(config.DATABASE_NAME, config.COLLECTION_NAME_CNSTOCK) Deduplication(config.DATABASE_NAME, config.COLLECTION_NAME_CNSTOCK).run() DeNull(config.DATABASE_NAME, config.COLLECTION_NAME_CNSTOCK).run() # 开启多线程并行实时爬取 thread_list = [] for url, type_chn in config.WEBSITES_LIST_TO_BE_CRAWLED_CNSTOCK.items(): thread = threading.Thread(target=cnstock_spyder.get_realtime_news, args=(url, type_chn, 60)) thread_list.append(thread) for thread in thread_list: thread.start() for thread in thread_list: thread.join()
def __init__(self): self.tokenization = Tokenization(import_module="jieba", user_dict="../Leorio/financedict.txt", chn_stop_words_dir="../Leorio/chnstopwords.txt")
class TopicModelling(object): def __init__(self): self.tokenization = Tokenization(import_module="jieba", user_dict="../Leorio/financedict.txt", chn_stop_words_dir="../Leorio/chnstopwords.txt") def create_dictionary(self, raw_documents_list, savepath=None): """ 将文中每个词汇关联唯一的ID,因此需要定义词汇表 :param: raw_documents_list, 原始语料列表,每个元素即文本,如["洗尽铅华...", "风雨赶路人...", ...] :param: savepath, corpora.Dictionary对象保存路径 """ documents_token_list = [] for doc in raw_documents_list: documents_token_list.append(self.tokenization.cut_words(doc)) _dict = corpora.Dictionary(documents_token_list) if savepath: _dict.save(savepath) return _dict, documents_token_list def create_bag_of_word_representation(self, raw_documents_list, dict_save_path=None, bow_vector_save_path=None): corpora_dictionary, documents_token_list = self.create_dictionary(raw_documents_list, savepath=dict_save_path) bow_vector = [corpora_dictionary.doc2bow(doc_token) for doc_token in documents_token_list] if bow_vector_save_path: corpora.MmCorpus.serialize(bow_vector_save_path, bow_vector) return documents_token_list, corpora_dictionary, bow_vector def transform_vectorized_corpus(self, corpora_dictionary, bow_vector, model_type="lda", model_save_path=None): if model_type == "lsi": tfidf_vector = models.TfidfModel(bow_vector)[bow_vector] model = models.LsiModel(tfidf_vector, id2word=corpora_dictionary, num_topics=config.TOPIC_NUMBER) # 初始化模型 model_vector = model[tfidf_vector] if model_save_path: model.save(model_save_path) return tfidf_vector, model_vector elif model_type == "lda": tfidf_vector = models.TfidfModel(bow_vector)[bow_vector] model = models.LdaModel(tfidf_vector, id2word=corpora_dictionary, num_topics=config.TOPIC_NUMBER) # 初始化模型 model_vector = model[tfidf_vector] if model_save_path: model.save(model_save_path) return tfidf_vector, model_vector elif model_type == "tfidf": model = models.TfidfModel(bow_vector) # 初始化 tfidf_vector = model[bow_vector] # 将整个语料进行转换 if model_save_path: model.save(model_save_path) return tfidf_vector def load_transform_model(self, model_path): if ".tfidf" in model_path: return models.TfidfModel.load(model_path) elif ".lsi" in model_path: return models.LsiModel.load(model_path) elif ".lda" in model_path: return models.LdaModel.load(model_path)