StopPatience = 30 for i in range(len(RunNames)): RunName = RunNames[i] model = models[0] TrainFile = open(path+TrainNames[0], 'rb') TestFile = open(path+TestNames[0], 'rb') TrainData = pickle.load(TrainFile) TestData = pickle.load(TestFile) dropChannels = ['time', 'stopId', 'rh1', 'tempg', 'n1', 'tfld1', 'frc1', 'v1', 'trg1', 'trot1', 'dec1', 'tlin1', 'tlin2', 'tamb1'] dropChannels.append(additionalDropChannel[i]) X_train = pp.shape_Data_to_LSTM_format(TrainData[0], dropChannels, scale=DataScaling) y_train = pp.reduceNumpyTD(pp.shape_Labels_to_LSTM_format(TrainData[1])) X_test = pp.shape_Data_to_LSTM_format(TestData[0], dropChannels, scale=DataScaling) y_test = pp.reduceNumpyTD(pp.shape_Labels_to_LSTM_format(TestData[1])) epochs = 300 batch_size = 10 class_weight = {0: 1., 1: 1. } m = Sequential() input_shape = (X_train.shape[1], X_train.shape[2]) m = model_setup.modelDict[model](input_shape) callback = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=StopPatience, verbose=1, mode='auto')
DataScaling = True StopPatience = 15 for i in range(len(RunNames)): RunName = RunNames[i] Trainfilename = TrainfileNames[0] Testfilename = TestfileNames[0] model = models[i] file = open(path + Trainfilename, 'rb') TrainData = pickle.load(file) file = open(path + Testfilename, 'rb') TestData = pickle.load(file) X_train = TrainData[0] y_train = pp.reduceNumpyTD(TrainData[1]) X_test = TestData[0] y_test = pp.reduceNumpyTD(TestData[1]) epochs = 1 batch_size = 10 m = Sequential() input_shape = (X_train.shape[1], X_train.shape[2]) m = model_setup.modelDict[model](input_shape) callback = callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=StopPatience, verbose=1,
import pickle import numpy as np import pandas as pd from keras.models import load_model from Libraries import data_preprocessing as pp from Libraries import data_evaluation as d_Eval ModelPath = '/media/computations/DATA/ExperimentalData/Runs/156417/' ModelName = 'cross4L_16model' m = load_model(ModelPath+ModelName+'.h5') DataSetPath = '/media/computations/DATA/ExperimentalData/DataFiles/systemABCD/' #TestDataSets = ['center8s_pad_B_TestDataPandas', 'center8s_pad_B_TrainDataPandas', 'center8s_pad_D_TestDataPandas', 'center8s_pad_D_TrainDataPandas', 'center8s_pad_C_TestDataPandas', 'center8s_pad_C_TrainDataPandas'] #TestDataSets = ['center8s_pad_TestDataPandas'] TestDataSets = ['center8s_pad_D_TestDataPandas'] TestData = pd.DataFrame() TestLabel = pd.DataFrame() dropChannels = ['time', 'stopId'] for name in TestDataSets: Data = pickle.load(open(DataSetPath + name + '.p', 'rb')) TestData = TestData.append(Data[0]) TestLabel = TestLabel.append(Data[1]) TestData = pp.shape_Data_to_LSTM_format(TestData, dropChannels=dropChannels) TestLabel = pp.reduceNumpyTD(pp.shape_Labels_to_LSTM_format(TestLabel)) FP, FN, TP, TN = d_Eval.get_overall_results([(TestData, TestLabel)], m) MCC = d_Eval.get_MCC(FP, FN, TP, TN)