def test_Exponent(): a = Tensor.randn(8, 10, requires_grad=True) o = MLlib.exp(a) o.backward() if not_close(a.grad.data, o.data): raise AssertionError
def test_ExponentWithMathModule(): a = Tensor.randn(8, 10, requires_grad=True) o = math.e**a o.backward() if not_close(a.grad.data, o.data): raise AssertionError
def test_Cos(): a = Tensor.randn(6, 8, requires_grad=True) o = MLlib.cos(a) o.backward() if not_close(a.grad.data, -np.sin(a.data)): raise AssertionError
def test_Tan(): a = Tensor.randn(6, 8, requires_grad=True) o = MLlib.tan(a) o.backward() if not_close(a.grad.data, 1 / (np.cos(a.data))**2): raise AssertionError
def __init__(self, in_features, out_features): self.bias = Tensor(0., requires_grad=True) self.weight = Tensor.randn(out_features, in_features) self.weight.requires_grad = True
from MLlib import Tensor from MLlib.regularizer import LinearRegWith_Regularization from MLlib.regularizer import L1_Regularizer from MLlib.optim import SGDWithMomentum from MLlib.utils.misc_utils import printmat import numpy as np np.random.seed(5322) x = Tensor.randn(10, 8) # (batch_size, features) y = Tensor.randn(10, 1) reg = LinearRegWith_Regularization(8, L1_Regularizer, optimizer=SGDWithMomentum, Lambda=7) # Regularizer,optimizer and Lambda as per user's choice printmat("Total Loss", reg.fit(x, y, 800))