def building_matrices(self, loop_counter=0): matrix_builder_instance = ml.OptMatrix() self.matrix_builder_instance = matrix_builder_instance S_matrix = matrix_builder_instance.load_S(self.experiment_dictonaries, self.list_of_parsed_yamls, dk=self.perturbment) self.S_matrix = S_matrix if loop_counter == 0: Y_matrix, Y_data_frame = matrix_builder_instance.load_Y( self.experiment_dictonaries, self.list_of_parsed_yamls, loop_counter=loop_counter) else: Y_matrix, Y_data_frame = matrix_builder_instance.load_Y( self.experiment_dictonaries, self.list_of_parsed_yamls, loop_counter=loop_counter, X=self.X_to_subtract_from_Y) self.Y_matrix = Y_matrix self.Y_data_frame = Y_data_frame z_matrix, z_data_frame, sigma = matrix_builder_instance.build_Z( self.experiment_dictonaries, self.list_of_parsed_yamls, loop_counter=loop_counter, reaction_uncertainty=self.data_directory + '/' + self.reaction_uncertainty_csv) self.z_matrix = z_matrix self.z_data_frame = z_data_frame self.sigma = sigma return
def building_matrices(self, loop_counter=0): matrix_builder_instance = ml.OptMatrix() self.matrix_builder_instance = matrix_builder_instance S_matrix = matrix_builder_instance.load_S( self.experiment_dictonaries, self.list_of_parsed_yamls, dk=self.perturbment, master_equation_reactions=self.master_equation_reactions, mapped_master_equation_sensitivites=self.MP_for_S_matrix, master_equation_flag=self.master_equation_flag) self.S_matrix = S_matrix if loop_counter == 0: Y_matrix, Y_data_frame = matrix_builder_instance.load_Y( self.experiment_dictonaries, self.list_of_parsed_yamls, loop_counter=loop_counter, master_equation_flag=self.master_equation_flag, master_equation_uncertainty_df=self. master_equation_uncertainty_df, master_equation_reactions=self.master_equation_reactions) else: Y_matrix, Y_data_frame = matrix_builder_instance.load_Y( self.experiment_dictonaries, self.list_of_parsed_yamls, loop_counter=loop_counter, X=self.X_to_subtract_from_Y, master_equation_flag=self.master_equation_flag, master_equation_uncertainty_df=self. master_equation_uncertainty_df, master_equation_reactions=self.master_equation_reactions) self.Y_matrix = Y_matrix self.Y_data_frame = Y_data_frame z_matrix, z_data_frame, sigma, active_parameters = matrix_builder_instance.build_Z( self.experiment_dictonaries, self.list_of_parsed_yamls, loop_counter=loop_counter, reaction_uncertainty=self.data_directory + '/' + self.reaction_uncertainty_csv, master_equation_uncertainty_df=self.master_equation_uncertainty_df, master_equation_flag=self.master_equation_flag, master_equation_reaction_list=self.master_equation_reactions) self.z_matrix = z_matrix self.z_data_frame = z_data_frame self.sigma = sigma self.active_parameters = active_parameters return
] yaml_instance = yp.Parser() list_of_yaml_objects = yaml_instance.load_yaml_list(yaml_list=yaml_file_list) list_of_experiment_dicts = yaml_instance.parsing_multiple_dictonaries( list_of_yaml_objects=list_of_yaml_objects) optimization_instance = opt.Optimization_Utility() test = optimization_instance.looping_over_parsed_yaml_files( list_of_experiment_dicts, yaml_file_list, processor=test_p, kineticSens=1, physicalSens=1, dk=.01) matix_instance = ml.OptMatrix() Y_matrix, Y1 = matix_instance.load_Y(test, list_of_experiment_dicts, loop_counter=0) z_matrix, z1, sigma = matix_instance.build_Z( test, list_of_experiment_dicts, loop_counter=0, reaction_uncertainty='MSI/data/test_data/uncertainty_test.csv') x1, x2, x3, x4 = matix_instance.breakup_delta_x(z_matrix[257:], test, loop_counter=0)
# simulation:sim.instruments.shock_tube.shockTube, # interpolated_kinetic_sens:dict, # interpolated_tp_sens:list, # interpolated_species_sens:list, # interpolated_absorbance:list=[]): optimization_instance = opt.Optimization_Utility() exp_1 = optimization_instance.build_single_exp_dict( 1, test_tube, int_ksens_exp_mapped, int_tp_psen_against_experimental, int_spec_psen_against_experimental) #no absorbance in experiment 1 exp_2 = optimization_instance.build_single_exp_dict( 2, test_tube2, int_ksens_exp_mapped2, int_tp_psen_against_experimental2, int_spec_psen_against_experimental2, interpolated_absorbance=interp_abs2_exp) #absorbance in experiment 2 print("Experiments built successfully") #print(exp_2['ksens']['A'][0].shape) #print(exp_2['species'][0].shape) #print(exp_2['species'][1].shape) #print(exp_2['species'][2].shape) #################### # Build the S matrix # #################### mloader = ml.OptMatrix() S = mloader.load_S([exp_1, exp_2]) print(S)