def testVariablesByLayer(self): batch_size = 5 height, width = 299, 299 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.ops.conv2d], batch_norm_params={'decay': 0.9997}): slim.inception.inception_v3(inputs) self.assertEqual(len(get_variables()), 388) self.assertEqual(len(get_variables('conv0')), 4) self.assertEqual(len(get_variables('conv1')), 4) self.assertEqual(len(get_variables('conv2')), 4) self.assertEqual(len(get_variables('conv3')), 4) self.assertEqual(len(get_variables('conv4')), 4) self.assertEqual(len(get_variables('mixed_35x35x256a')), 28) self.assertEqual(len(get_variables('mixed_35x35x288a')), 28) self.assertEqual(len(get_variables('mixed_35x35x288b')), 28) self.assertEqual(len(get_variables('mixed_17x17x768a')), 16) self.assertEqual(len(get_variables('mixed_17x17x768b')), 40) self.assertEqual(len(get_variables('mixed_17x17x768c')), 40) self.assertEqual(len(get_variables('mixed_17x17x768d')), 40) self.assertEqual(len(get_variables('mixed_17x17x768e')), 40) self.assertEqual(len(get_variables('mixed_8x8x2048a')), 36) self.assertEqual(len(get_variables('mixed_8x8x2048b')), 36) self.assertEqual(len(get_variables('logits')), 2) self.assertEqual(len(get_variables('aux_logits')), 10)
def testTotalLossWithRegularization(self): batch_size = 5 height, width = 299, 299 num_classes = 1000 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) dense_labels = tf.random_uniform((batch_size, num_classes)) with slim.arg_scope([slim.ops.conv2d, slim.ops.fc], weight_decay=0.00004): logits, end_points = slim.inception.inception_v3( inputs, num_classes) # Cross entropy loss for the main softmax prediction. slim.losses.cross_entropy_loss(logits, dense_labels, label_smoothing=0.1, weight=1.0) # Cross entropy loss for the auxiliary softmax head. slim.losses.cross_entropy_loss(end_points['aux_logits'], dense_labels, label_smoothing=0.1, weight=0.4, scope='aux_loss') losses = tf.get_collection(slim.losses.LOSSES_COLLECTION) self.assertEqual(len(losses), 2) reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(len(reg_losses), 98)
def testRegularizationLosses(self): batch_size = 5 height, width = 299, 299 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.ops.conv2d, slim.ops.fc], weight_decay=0.00004): slim.inception.inception_v3(inputs) losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES) self.assertEqual(len(losses), len(get_variables_by_name('weights')))
def testVariablesToRestoreWithoutLogits(self): batch_size = 5 height, width = 299, 299 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.ops.conv2d], batch_norm_params={'decay': 0.9997}): slim.inception.inception_v3(inputs, restore_logits=False) variables_to_restore = tf.get_collection( slim.variables.VARIABLES_TO_RESTORE) self.assertEqual(len(variables_to_restore), 384)
def testVariablesWithoutBatchNorm(self): batch_size = 5 height, width = 299, 299 with self.test_session(): inputs = tf.random_uniform((batch_size, height, width, 3)) with slim.arg_scope([slim.ops.conv2d], batch_norm_params=None): slim.inception.inception_v3(inputs) self.assertEqual(len(get_variables()), 196) self.assertEqual(len(get_variables_by_name('weights')), 98) self.assertEqual(len(get_variables_by_name('biases')), 98) self.assertEqual(len(get_variables_by_name('beta')), 0) self.assertEqual(len(get_variables_by_name('gamma')), 0) self.assertEqual(len(get_variables_by_name('moving_mean')), 0) self.assertEqual(len(get_variables_by_name('moving_variance')), 0)