def create(self): x_train, x_test = get_dataSets() x_train = np.reshape(x_train, (len(x_train), 28, 28, 1)) x_test = np.reshape(x_test, (len(x_test),28, 28, 1)) input_img = Input(shape=(28, 28, 1)) x = Convolution2D(16, (3, 3), activation='relu', border_mode='same')(input_img) x = MaxPooling2D((2, 2), border_mode='same')(x) x = Convolution2D(8, (3, 3), activation='relu', border_mode='same')(x) x = MaxPooling2D((2, 2), border_mode='same')(x) x = Convolution2D(8, (3, 3), activation='relu', border_mode='same')(x) encoded = MaxPooling2D((2, 2), border_mode='same')(x) x = Convolution2D(8, (3, 3), activation='relu', border_mode='same')(encoded) x = UpSampling2D((2, 2))(x) x = Convolution2D(8, (3, 3), activation='relu', border_mode='same')(x) x = UpSampling2D((2, 2))(x) x = Convolution2D(16, 3, 3, activation='relu')(x) x = UpSampling2D((2, 2))(x) decoded = Convolution2D(1, (3, 3), activation='sigmoid', border_mode='same')(x) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.fit(x_train, x_train, epochs=20, batch_size=256, shuffle=True, validation_data=(x_test, x_test)) return autoencoder
def create(self): x_train, x_test = get_dataSets() encoding_dim = 32 input_img = Input(shape=(784,)) encoded = Dense(encoding_dim, activation='relu')(input_img) decoded = Dense(784, activation='sigmoid')(encoded) autoencoder = Model(input=input_img, output=decoded) encoder = Model(input=input_img, output=encoded) encoded_input = Input(shape=(encoding_dim,)) decoder_layer = autoencoder.layers[-1] decoder = Model(input=encoded_input, output=decoder_layer(encoded_input)) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.fit(x_train, x_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test, x_test)) return autoencoder, encoder, decoder
def create(self): x_train, x_test = get_dataSets() input_img = Input(shape=(784,)) encoded = Dense(128, activation='relu')(input_img) encoded = Dense(64, activation='relu')(encoded) encoded = Dense(32, activation='relu')(encoded) decoded = Dense(64, activation='relu')(encoded) decoded = Dense(128, activation='relu')(decoded) decoded = Dense(784, activation='sigmoid')(decoded) autoencoder = Model(input=input_img, output=decoded) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.fit(x_train, x_train, epochs=1, batch_size=128, shuffle=True, validation_data=(x_test, x_test)) return autoencoder
x_train, x_test = get_dataSets() encoding_dim = 32 input_img = Input(shape=(784, )) encoded = Dense(encoding_dim, activation='relu', activity_regularizer=regularizers.l1(10e-5))(input_img) decoded = Dense(784, activation='sigmoid')(encoded) autoencoder = Model(input=input_img, output=decoded) encoder = Model(input=input_img, output=encoded) encoded_input = Input(shape=(encoding_dim, )) decoder_layer = autoencoder.layers[-1] decoder = Model(input=encoded_input, output=decoder_layer(encoded_input)) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.fit(x_train, x_train, epochs=1, batch_size=256, shuffle=True, validation_data=(x_test, x_test)) return autoencoder, encoder, decoder pass if __name__ == '__main__': x_train, x_test = get_dataSets() singel = sparse_layer() autoencode, encoder, decoder = singel.create() decoded_imgs = autoencode.predict(x_test) show(x_test, decoded_imgs)