def find_discrete_line_points2(self, matching_image, p1, p2, show): if show: print("finding discrete line point between ", p1, p2) mp = MatchingProblem(p1, p2, matching_image) sol = astar_search(mp) path = self.path_states(sol) return path
def test_get_recom_info_matrix(self): my_problem = MatchingProblem(users, items, trans) result = my_problem.get_recom_info(3)['recom_dok_matrix'].toarray() expected = np.array([ [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0]]).astype('int8') self.assertTrue(np.array_equal(result, expected))
def test_get_recom_info_summary(self): my_problem = MatchingProblem(users, items, trans) result = my_problem.get_recom_info(3)['recom_summary'] expected = Counter({5: 6, 7: 2, 2: 1, 6: 1}) self.assertDictEqual(result, expected)
def test_get_recom(self): my_problem = MatchingProblem(users, items, trans) result = my_problem.get_recom(2, 3) expected = 6 self.assertEqual(result, expected)
def test_best_item(self): my_problem = MatchingProblem(users, items, trans) result = my_problem.best_item(np.array([7,9,4])) expected = 6 self.assertEqual(result, expected)
def test_get_nearest_neighbors(self): my_problem = MatchingProblem(users, items, trans) result = my_problem.get_nearest_neighbors(2, 3) expected = np.array([7, 9, 4]) self.assertTrue(np.array_equal(result, expected))
def test_most_popular_item(self): my_problem = MatchingProblem(users, items, trans) result = my_problem.most_popular_item() expected = 2 self.assertEquals(result, expected)