예제 #1
0
    def __projectm(vector, center):
        """
        apply 
        clipping matrix
        camera transformation matrix
        camera rotation matrix

        TODO: finally sort out vertices out of clipping area

        and return tuple on 2D Coordinates
        taken from : http://stackoverflow.com/questions/724219/how-to-convert-a-3d-point-into-2d-perspective-projection
        """
        clipping_m = Matrix3D([[FOV * ASPECT_RATIO, 0.0, 0.0, 0.0],
                               [0.0, FOV, 0.0, 0.0],
                               [
                                   0.0, 0.0, (far + near) / (far - near),
                                   (2.0 * near * far) / (near - far)
                               ], [0.0, 0.0, 1.0, 0.0]])
        cam_translation_m = Matrix3D.get_shift_matrix(0, 0, -10)
        cam_rot_m = Matrix3D.get_rot_y_matrix(Y_ANGLE).dot(
            Matrix3D.get_rot_x_matrix(X_ANGLE))
        # mind the order !!
        new_vector = clipping_m.dot(
            cam_translation_m.dot(cam_rot_m)).v_dot(vector)
        new_x = center[0] + new_vector.x * 16.0 / (2.0 * new_vector.z) + 8.0
        new_y = center[1] + new_vector.y * 9.0 / (2.0 * new_vector.z) + 4.5
        return new_x, new_y
예제 #2
0
 def test_inverse(self):
     # for next example look at
     # http://matheguru.com/lineare-algebra/207-determinante.html
     mr = Matrix3D([
         [5.0, 0.0, 3.0, -1.0],
         [3.0, 0.0, 0.0, 4.0],
         [-1.0, 2.0, 4.0, -2.0],
         [1.0, 0.0, 0.0, 5.0],
     ])
     print "inverse(mr) =\n", mr.inverse()
     test_m = Matrix3D([
         [0.0, 0.4545454545454546, 0.0, -0.36363636363636365],
         [-0.6666666666666667, 1.7121212121212122, 0.5, -1.303030303030303],
         [0.33333333333333337, -0.7878787878787878, 0.0, 0.696969696969697],
         [0.0, -0.09090909090909091, 0.0, 0.2727272727272727]
     ])
     assert mr.inverse() == test_m
예제 #3
0
 def solve(self):
     if self.a.is_singular():
         return "infinity"
     sol = []
     for i in range(self.n):
         t = Matrix3D(self.a)
         t.set_row(self.b.get_list(), i)
         sol.append(t.det() / self.a.det())
     return sol
예제 #4
0
 def test_matrix_dot(self):
     """test dot product identity matrix and transpose"""
     mi = Matrix3D.identity()
     # I dot transposed(I) = I
     assert mi == mi.dot(mi.transpose())
     mr = Matrix3D([
         [1, 2, 3, 4],
         [5, 6, 7, 8],
         [9, 10, 11, 12],
         [13, 14, 15, 16],
     ])
     assert mr.dot(mi) == mr
     test_transposed = Matrix3D([[1, 5, 9, 13], [2, 6, 10, 14],
                                 [3, 7, 11, 15], [4, 8, 12, 16]])
     assert mr.transpose() == test_transposed
     test_m = Matrix3D([
         [30, 70, 110, 150],
         [70, 174, 278, 382],
         [110, 278, 446, 614],
         [150, 382, 614, 846],
     ])
     assert mr.dot(mr.transpose()) == test_m
     A = Matrix3D([[3, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 1]])
     B = Matrix3D([[math.sqrt(3) / 2, 0, -1 / 2, 0], [0, 1, 0, 0],
                   [1 / 2, 0, math.sqrt(3) / 2, 0], [0, 0, 0, 1]])
     C = Matrix3D([[1, 0, 0, 3], [0, 1, 0, -1], [0, 0, 1, 2], [0, 0, 0, 1]])
     # testing assosiativeness (A*B)*C == A*(B*C)
     assert A.dot(B).dot(C) == A.dot(B.dot(C))
예제 #5
0
 def test_det(self):
     m = Matrix3D.identity()
     print "det(I)=", m.det()
     # for next example look at
     # http://matheguru.com/lineare-algebra/207-determinante.html
     mr = Matrix3D([
         [5, 0, 3, -1],
         [3, 0, 0, 4],
         [-1, 2, 4, -2],
         [1, 0, 0, 5],
     ])
     print "T(mr)=\n", mr.transpose()
     print "det(mr)=", mr.det()
     assert mr.det() == 66
     print "det(T(mr))=", mr.transpose().det()
     assert mr.det() == mr.transpose().det()
예제 #6
0
from Matrix3D import Matrix3D
from Solver import Solver
from Vector import Vector3D

filename = 'sle3D.txt'
a = Matrix3D()
b = Vector3D()

a.read_from_file(filename)
b.read_from_file(filename)

a.print()
b.print()
print()

s = Solver(a, b)
print(s.solve())