import numpy as np import pandas as pd import math import random from sklearn.neighbors import NearestNeighbors from sklearn.cluster import DBSCAN from matplotlib import pyplot as plt import Meeting10.BFS.functions as fs #X = fs.getTINSData() #labelsMatrix = np.genfromtxt("TINSlabels.csv", delimiter=",") X = fs.getGenData() labelsMatrix = np.genfromtxt("GENlabels.csv", delimiter=",") n = 25 xStart = -5 #xEnd = 5 xEnd = 15 yStart = 15 yEnd = -10 xIteration = (xEnd - xStart) / n yIteration = (yEnd - yStart) / n labelsX = fs.delabeling(X, labelsMatrix, n, xStart, xEnd, yStart, yEnd) LABEL_COLOR_MAP = { -1: 'white', 0: 'w',
from sklearn.cluster import DBSCAN from sklearn.cluster import KMeans sys.setrecursionlimit(100000) import Meeting10.BFS.functions as fs import Meeting10.BFS.benchmarking as f n = 25 # X = np.genfromtxt("unbalance.csv", delimiter=",") # X = np.genfromtxt("s1_labeled.csv", delimiter=",") # X = np.genfromtxt("s2_labeled.csv", delimiter=",") # X, y = X[:, [0,1]], X[:, 2] X, y = fs.getGenData() start = timer() # kmeans = KMeans(n_clusters=8).fit(X) #unbalanced kmeans = KMeans(n_clusters=15).fit(X) #s1, s2 kmeans = KMeans(n_clusters=4).fit(X) #gen labels = kmeans.labels_ end = timer() f.benchmark(labels, y) print("KMEANS TIME: " + str(end - start)) #eps = 5000 #unbalanced #min_samples=np.log(len(X)) #unbalanced # eps = 45000 #s2 # min_samples=np.log(len(X))*10 #s2