def test_algorithms_for_target_depression(self): print("precision score") print("\n\n\n depression_cutoff \n") target = "depression_cutoff" multiple_features_eda = EDAMultiFeatureBackend( self.df, self.features + self.features_2, target) print("\n depression_cutoff with resample\nn=10") multiple_features_eda.model_checking(10, scoring='precision') print("\n depression_cutoff without resample\nn=10") multiple_features_eda.model_checking_without_resampling( 10, scoring='precision') print("\n depression_cutoff with resample\nn=20") multiple_features_eda.model_checking(20, scoring='precision') print("\n depression_cutoff without resample\nn=20") multiple_features_eda.model_checking_without_resampling( 20, scoring='precision') print("\n depression_cutoff with resample\nn=30") multiple_features_eda.model_checking(30, scoring='precision') print("\n depression_cutoff without resample\nn=30") multiple_features_eda.model_checking_without_resampling( 30, scoring='precision') print("depression_cutoff logreg f1 score") multiple_features_eda.logistic_regression_grid_search() print("depression_cutoff logreg precision score") multiple_features_eda.logistic_regression_grid_search( scoring='precision')
def test_algorithms_for_target_diagnosis(self): print("precision score") print("\n\n\n diagnosis \n") target = "diagnosis" multiple_features_eda = EDAMultiFeatureBackend(self.df, self.features + self.features_2, target) print("\n diagnosis with resample\nn=10") multiple_features_eda.model_checking(10, scoring='precision') print("\n diagnosis without resample\nn=10") multiple_features_eda.model_checking_without_resampling(10, scoring='precision') print("\n diagnosis with resample\nn=20") multiple_features_eda.model_checking(20, scoring='precision') print("\n diagnosis without resample\nn=20") multiple_features_eda.model_checking_without_resampling(20, scoring='precision') print("\n diagnosis with resample\nn=30") multiple_features_eda.model_checking(30, scoring='precision') print("\n diagnosis without resample\nn=30") multiple_features_eda.model_checking_without_resampling(30, scoring='precision')
def test_algorithms_for_target_diagnosis(self): print("precision score") print("\n\n\n diagnosis \n") target = "diagnosis" multiple_features_eda = EDAMultiFeatureBackend( self.df, self.features + self.features_2, target) print("\n diagnosis with resample\nn=10") multiple_features_eda.model_checking(10, scoring='precision') print("\n diagnosis without resample\nn=10") multiple_features_eda.model_checking_without_resampling( 10, scoring='precision') print("\n diagnosis with resample\nn=20") multiple_features_eda.model_checking(20, scoring='precision') print("\n diagnosis without resample\nn=20") multiple_features_eda.model_checking_without_resampling( 20, scoring='precision') print("\n diagnosis with resample\nn=30") multiple_features_eda.model_checking(30, scoring='precision') print("\n diagnosis without resample\nn=30") multiple_features_eda.model_checking_without_resampling( 30, scoring='precision')
def test_algorithms_for_target_depression(self): print("precision score") print("\n\n\n depression_cutoff \n") target = "depression_cutoff" multiple_features_eda = EDAMultiFeatureBackend(self.df, self.features + self.features_2, target) print("\n depression_cutoff with resample\nn=10") multiple_features_eda.model_checking(10, scoring='precision') print("\n depression_cutoff without resample\nn=10") multiple_features_eda.model_checking_without_resampling(10, scoring='precision') print("\n depression_cutoff with resample\nn=20") multiple_features_eda.model_checking(20, scoring='precision') print("\n depression_cutoff without resample\nn=20") multiple_features_eda.model_checking_without_resampling(20, scoring='precision') print("\n depression_cutoff with resample\nn=30") multiple_features_eda.model_checking(30, scoring='precision') print("\n depression_cutoff without resample\nn=30") multiple_features_eda.model_checking_without_resampling(30, scoring='precision') print("depression_cutoff logreg f1 score") multiple_features_eda.logistic_regression_grid_search() print("depression_cutoff logreg precision score") multiple_features_eda.logistic_regression_grid_search(scoring='precision')