def main(_): sess = tf.Session() print('---Prepare data...') ### YOUR CODE HERE #data_dir = "/content/drive/My Drive/Colab Notebooks/code/HW3/data/" data_dir = "/content/drive/My Drive/data" ### END CODE HERE x_train, y_train, x_test, y_test = load_data(data_dir) x_train_new, y_train_new, x_valid, y_valid = train_valid_split( x_train, y_train) model = Cifar(sess, configure()) ### YOUR CODE HERE # First step: use the train_new set and the valid set to choose hyperparameters. #model.train(x_train_new, y_train_new, 200) #model.test_or_validate(x_valid, y_valid, [10,20,30,40,50,100,150,200]) # Second step: with hyperparameters determined in the first run, re-train # your model on the original train set. # model.train(x_train, y_train, 200) # Third step: after re-training, test your model on the test set. # Report testing accuracy in your hard-copy report. model.test_or_validate( x_test, y_test, [100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200])
def main(_): sess = tf.Session() print('---Prepare data...') ### YOUR CODE HERE data_dir = "/home/seizethedty/DATA/cifar-10-batches-py/" ### END CODE HERE x_train, y_train, x_test, y_test = load_data(data_dir) x_train_new, y_train_new, x_valid, y_valid = train_valid_split( x_train, y_train) model = Cifar(sess, configure()) ### YOUR CODE HERE # First step: use the train_new set and the valid set to choose hyperparameters. #model.train(x_train_new, y_train_new, 200) #model.test_or_validate(x_valid, y_valid, [140, 150, 160, 170, 180, 190, 200]) # Second step: with hyperparameters determined in the first run, re-train # your model on the original train set. #model.train(x_train, y_train, 200) # Third step: after re-training, test your model on the test set. # Report testing accuracy in your hard-copy report. model.test_or_validate(x_test, y_test, [200])
def main(_): sess = tf.Session() print('---Prepare data...') ### YOUR CODE HERE data_dir = "data/" ### END CODE HERE x_train, y_train, x_test, y_test = load_data(data_dir) x_train_new, y_train_new, x_valid, y_valid = train_valid_split( x_train, y_train) model = Cifar(sess, configure()) ### YOUR CODE HERE # First step: use the train_new set and the valid set to choose hyperparameters. # #model.train(x_train_new, y_train_new, 200) #model.train(x_train_new, y_train_new, 3) #model.test_or_validate(x_valid, y_valid, [160, 170, 180, 190, 200]) #model.test_or_validate(x_valid, y_valid, [10]) # Second step: with hyperparameters determined in the first run, re-train # your model on the original train set. model.train(x_train, y_train, 150)
def main(_): sess = tf.Session() print('---Prepare data...') ### YOUR CODE HERE data_dir = os.path.join(os.path.abspath(os.getcwd()),"ResNet/data") ### END CODE HERE x_train, y_train, x_test, y_test = load_data(data_dir) x_train_new, y_train_new, x_valid, y_valid = train_valid_split(x_train, y_train) model = Cifar(sess, configure()) ### YOUR CODE HERE # First step: use the train_new set and the valid set to choose hyperparameters. model.train(x_train_new, y_train_new, 200)
def main(_): sess = tf.Session() print('---Prepare data...') ### YOUR CODE HERE data_dir = '../cifar-10-batches-py' ### END CODE HERE x_train, y_train, x_test, y_test = load_data(data_dir) x_train_new, y_train_new, x_valid, y_valid = train_valid_split( x_train, y_train) model = Cifar(sess, configure()) ### YOUR CODE HERE # from Network import ResNet # network = ResNet(1, 3, 10, 16) # ips = tf.placeholder(tf.float32, shape=(100, 32, 32, 3)) # sess.run(tf.global_variables_initializer()) # sess.run(tf.local_variables_initializer()) # net = network(ips,training=True) # from tensorflow.keras import Model # model = Model(inputs=ips, outputs=net) # print(model.summary) # # print(sess.run(network(ips,training=True))) # writer = tf.summary.FileWriter('output', sess.graph) # writer.close() # First step: use the train_new set and the valid set to choose hyperparameters. # model.train(x_train_new, y_train_new, 200) # while True: # model.train(x_train_new, y_train_new, 600) # model.test_or_validate(x_valid,y_valid,[i*10 for i in range(1,11)]) # model.test_or_validate(x_valid,y_valid,[20]) # model.test_or_validate(x_valid, y_valid, [160, 170, 180, 190, 200]) # model.test_or_validate(x_valid,y_valid,[10]) # Second step: with hyperparameters determined in the first run, re-train # your model on the original train set. # model.train(x_train, y_train, 200) # Third step: after re-training, test your model on the test set. # Report testing accuracy in your hard-copy report. model.test_or_validate(x_test, y_test, [170])
def main(_): tf.set_random_seed(1234) sess = tf.Session() print('---Prepare data...') ### YOUR CODE HERE data_dir = './' ### END CODE HERE x_train, y_train, x_test, y_test = load_data(data_dir) x_train_new, y_train_new, x_valid, y_valid = train_valid_split( x_train, y_train) model = Cifar(sess, configure()) ### YOUR CODE HERE # First step: use the train_new set and the valid set to choose hyperparameters. # Second step: with hyperparameters determined in the first run, re-train # your model on the original train set. model.train(x_train, y_train, 50) # Third step: after re-training, test your model on the test set. # Report testing accuracy in your hard-copy report. model.test_or_validate(x_test, y_test, [30, 35, 40, 45, 50])
def main(_): sess = tf.Session() print('---Prepare data...') ### YOUR CODE HERE data_dir = "/Users/tiandi03/Desktop/dataset/cifar-10-batches-py" ### END CODE HERE x_train, y_train, x_test, y_test = load_data(data_dir) x_train_new, y_train_new, x_valid, y_valid = train_valid_split(x_train, y_train) model = Cifar(sess, configure()) ### YOUR CODE HERE # First step: use the train_new set and the valid set to choose hyperparameters. model.train(x_train_new, y_train_new, 200) model.test_or_validate(x_valid, y_valid, [160, 170, 180, 190, 200])
def main(_): sess = tf.Session() print('---Prepare data...') ### YOUR CODE HERE # Download cifar-10 dataset from https://www.cs.toronto.edu/~kriz/cifar.html data_dir = "cifar-10-batches-py" ### END CODE HERE x_train, y_train, x_test, y_test = load_data(data_dir) x_train_new, y_train_new, x_valid, y_valid = train_valid_split( x_train, y_train) model = Cifar(sess, configure()) ### YOUR CODE HERE model.train(x_train, y_train, 40) model.test_or_validate(x_test, y_test, [5, 10, 15, 20, 25, 30, 35, 40])