def test_mc_analy_comparison(): qgy_md = qgy.QgyModel() num_sim = 10000 n_per_year = 50 EtXT_analy = compute_expectation_analytic(qgy_md) EtXT_mc = compute_expectation_mc(qgy_md, num_sim, n_per_year) plt.plot(qgy_md.Tk, EtXT_analy, 'r--') plt.plot(qgy_md.Tk, EtXT_mc, 'b-o') plt.show()
def test_convergence(): qgy_md = qgy.QgyModel() num_sim = 100 n_per_year = 100 EtXT_analy = compute_expectation_analytic(qgy_md) for i in range(1, 10): current_num = num_sim * i * 2 EtXT_mc = compute_expectation_mc(qgy_md, current_num, n_per_year) RMSE = np.sqrt(np.sum((EtXT_analy - EtXT_mc)**2)) print("sim_num = ", current_num, "err = ", RMSE, "N * err = ", current_num * RMSE, "sqrt(N) * err = ", np.sqrt(current_num) * RMSE)
from Model.QgyModel import * qgy = QgyModel() ytT = qgy.price_yoy_infln_fwd() I0_Tk_corr = qgy.fit_yoy_convexity_correction(qgy.I0_Tk) plt.subplot(1, 2, 1) plt.plot(qgy.Tk[1:], -0.00012662 * np.log(qgy.Tk[1:]), '-') plt.plot(qgy.Tk[1:], ytT[1:] - (qgy.I0_Tk[1:] / qgy.I0_Tk[:-1] - 1), 'or') plt.subplot(1, 2, 2) plt.plot(qgy.Tk[1:], ytT[1:] - (I0_Tk_corr[1:] / I0_Tk_corr[:-1] - 1), 'or') print(qgy.I0_Tk) print(I0_Tk_corr) plt.show()
import Model.QgyModel as qgy import matplotlib.pyplot as plt import numpy as np qgy = qgy.QgyModel() qgy.n_per_year = 50 num_path = 10000 P_Tk = qgy.P_0T(qgy.Tk) Sigma_Tk_y = 0.045 v_Tk_y = 0.8 rho_Tk_y = -0.5 rho_t_ny1 = -0.1 #R_Tk = np.array([0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]) * 0.01 R_Tk = np.array([0, 1, 2, 4, 8, 16, 32, 64, 128, 256]) * 0.01 count = 0 for R in R_Tk: mc_res = np.zeros(len(qgy.Tk)) qgy.fill_spherical_parameters(Sigma_Tk_y, v_Tk_y, rho_Tk_y, rho_t_ny1, R) for k in range(num_path): qgy.generate_terms_structure() disc = qgy.D_t yoy = qgy.Y_Tk disc_price = yoy * disc mc_res += disc_price #plt.plot(qgy.Tk, disc_price/P_Tk - 1, 'g-') avg_price = mc_res/num_path count += 1 plt.plot(qgy.Tk, avg_price/P_Tk - 1, color=[0, count/len(R_Tk), 0])