# Run standard learning for each task and average the parameters: avg_param_vec = None for i_task in range(n_train_tasks): print('Learning train-task {} out of {}'.format(i_task+1, n_train_tasks)) data_loader = train_data_loaders[i_task] test_err, curr_model = learn_single_standard.run_learning(data_loader, prm, verbose=0) if i_task == 0: avg_param_vec = parameters_to_vector(curr_model.parameters()) * (1 / n_train_tasks) else: avg_param_vec += parameters_to_vector(curr_model.parameters()) * (1 / n_train_tasks) avg_model = deterministic_models.get_model(prm) vector_to_parameters(avg_param_vec, avg_model.parameters()) # create the prior model: prior_model = stochastic_models.get_model(prm) prior_layers_list = [layer for layer in prior_model.modules() if isinstance(layer, StochasticLayer)] avg_model_layers_list = [layer for layer in avg_model.modules() if isinstance(layer, torch.nn.Conv2d) or isinstance(layer, torch.nn.Linear)] assert len(avg_model_layers_list)==len(prior_layers_list), "lists not equal" for i_layer, prior_layer in enumerate(prior_layers_list): if hasattr(prior_layer, 'w'): prior_layer.w['log_var'] = torch.nn.Parameter(zeros_gpu(1)) prior_layer.w['mean'] = avg_model_layers_list[i_layer].weight if hasattr(prior_layer, 'b'): prior_layer.b['log_var'] = torch.nn.Parameter(zeros_gpu(1)) prior_layer.b['mean'] = avg_model_layers_list[i_layer].bias # save learned prior:
save_model_state(prior_model, save_path) write_to_log('Trained prior saved in ' + save_path, prm) else: # In this case we observe new tasks generated from the task-distribution in each meta-iteration. write_to_log('---- Infinite train tasks - New training tasks are ' 'drawn from tasks distribution in each iteration...', prm) # Meta-training to learn meta-prior (theta params): prior_model = meta_train_Bayes_infinite_tasks.run_meta_learning(task_generator, prm) elif prm.mode == 'LoadMetaModel': # Loads previously training prior. # First, create the model: prior_model = get_model(prm) prm.load_model_path = '/hdd/shiwei/meta_learning _example/PriorMetaLearning/saved/ShuffledPixels100_TasksN/log 2019-05-23 14:36:30/1/model.pt' # prm.load_model_path = '/hdd/shiwei/meta_learning _example/PriorMetaLearning/saved/PermutedLabels_TasksN/log 2019-04-18 12:40:53/5/model.pt' # prm.load_model_path = '/hdd/shiwei/meta_learning _example/PriorMetaLearning/saved/model.pt' # Then load the weights: load_model_state(prior_model, prm.load_model_path) write_to_log('Pre-trained prior loaded from ' + prm.load_model_path, prm) else: raise ValueError('Invalid mode') # ------------------------------------------------------------------------------------------- # Generate the data sets of the test tasks: # ------------------------------------------------------------------------------------------- n_test_tasks = prm.n_test_tasks
def run_learning(task_data, prior_model, prm, init_from_prior=True, verbose=1): # ------------------------------------------------------------------------------------------- # Setting-up # ------------------------------------------------------------------------------------------- # Unpack parameters: optim_func, optim_args, lr_schedule =\ prm.optim_func, prm.optim_args, prm.lr_schedule # Loss criterion loss_criterion = get_loss_criterion(prm.loss_type) # Create posterior model for the new task: post_model = get_model(prm) if init_from_prior: post_model.load_state_dict(prior_model.state_dict()) # prior_model_dict = prior_model.state_dict() # post_model_dict = post_model.state_dict() # # # filter out unnecessary keys: # prior_model_dict = {k: v for k, v in prior_model_dict.items() if '_log_var' in k or '_mu' in k} # # overwrite entries in the existing state dict: # post_model_dict.update(prior_model_dict) # # # # load the new state dict # post_model.load_state_dict(post_model_dict) # add_noise_to_model(post_model, prm.kappa_factor) # The data-sets of the new task: train_loader = task_data['train'] test_loader = task_data['test'] n_train_samples = len(train_loader.dataset) n_batches = len(train_loader) # Get optimizer: optimizer = optim_func(post_model.parameters(), **optim_args) # ------------------------------------------------------------------------------------------- # Training epoch function # ------------------------------------------------------------------------------------------- def run_train_epoch(i_epoch): log_interval = 500 post_model.train() for batch_idx, batch_data in enumerate(train_loader): correct_count = 0 sample_count = 0 # Monte-Carlo iterations: n_MC = prm.n_MC task_empirical_loss = 0 task_complexity = 0 for i_MC in range(n_MC): # get batch: inputs, targets = data_gen.get_batch_vars(batch_data, prm) # Calculate empirical loss: outputs = post_model(inputs) curr_empirical_loss = loss_criterion(outputs, targets) curr_empirical_loss, curr_complexity = get_bayes_task_objective( prm, prior_model, post_model, n_train_samples, curr_empirical_loss, noised_prior=False) task_empirical_loss += (1 / n_MC) * curr_empirical_loss task_complexity += (1 / n_MC) * curr_complexity correct_count += count_correct(outputs, targets) sample_count += inputs.size(0) # Total objective: total_objective = task_empirical_loss + task_complexity # Take gradient step with the posterior: grad_step(total_objective, optimizer, lr_schedule, prm.lr, i_epoch) # Print status: if batch_idx % log_interval == 0: batch_acc = correct_count / sample_count print( cmn.status_string(i_epoch, prm.n_meta_test_epochs, batch_idx, n_batches, batch_acc, total_objective.item()) + ' Empiric Loss: {:.4}\t Intra-Comp. {:.4}'.format( task_empirical_loss.item(), task_complexity.item())) data_objective.append(total_objective.item()) data_accuracy.append(batch_acc) data_emp_loss.append(task_empirical_loss.item()) data_task_comp.append(task_complexity.item()) return total_objective.item() # -----------------------------------------------------------------------------------------------------------# # Update Log file if verbose == 1: write_to_log( 'Total number of steps: {}'.format(n_batches * prm.n_meta_test_epochs), prm) # ------------------------------------------------------------------------------------------- # Run epochs # ------------------------------------------------------------------------------------------- start_time = timeit.default_timer() data_objective = [] data_accuracy = [] data_emp_loss = [] data_task_comp = [] # Training loop: for i_epoch in range(prm.n_meta_test_epochs): test_bound = run_train_epoch(i_epoch) with open( os.path.join(prm.result_dir, 'run_test_data_prior_bound_data.pkl'), 'wb') as f: pickle.dump( { 'data_objective': data_objective, "data_accuracy": data_accuracy, 'data_emp_loss': data_emp_loss, 'data_task_comp': data_task_comp }, f) # Test: test_acc, test_loss = run_test_Bayes(post_model, test_loader, loss_criterion, prm) stop_time = timeit.default_timer() cmn.write_final_result(test_acc, stop_time - start_time, prm, result_name=prm.test_type, verbose=verbose) test_err = 1 - test_acc return test_err, test_loss, test_bound, post_model
def run_learning(task_data, prior_model, prm, init_from_prior=True, verbose=1): # prm.optim_func, prm.optim_args = optim.EntropySGD, {'llr':0.01, 'lr':0.1, 'momentum':0.9, 'damp':0, 'weight_decay':1e-3, 'nesterov':True, # 'L':20, 'eps':1e-3, 'g0':1e-4, 'g1':1e-3} # ------------------------------------------------------------------------------------------- # Setting-up # ------------------------------------------------------------------------------------------- # Unpack parameters: # prm.optim_args['llr'] = 0.1 # prm.optim_args['L'] = 20 # # prm.optim_args['weight_decay'] = 1e-3 # # prm.optim_args['g1'] = 0 # prm.optim_args['g0'] = 1e-4 optim_func, optim_args, lr_schedule =\ prm.optim_func, prm.optim_args, prm.lr_schedule_test # prm.optim_func, prm.optim_args = optim.Adam, {'lr': prm.lr} # 'weight_decay': 1e-4 # lr_schedule = {'decay_factor': 0.1, 'decay_epochs': [15, 20]} # Loss criterion loss_criterion = get_loss_criterion(prm.loss_type) # Create posterior model for the new task: post_model = get_model(prm) if init_from_prior: post_model.load_state_dict(prior_model.state_dict()) # prior_model_dict = prior_model.state_dict() # post_model_dict = post_model.state_dict() # # # filter out unnecessary keys: # prior_model_dict = {k: v for k, v in prior_model_dict.items() if '_log_var' in k or '_mu' in k} # # overwrite entries in the existing state dict: # post_model_dict.update(prior_model_dict) # # # # load the new state dict # post_model.load_state_dict(post_model_dict) # add_noise_to_model(post_model, prm.kappa_factor) # The data-sets of the new task: train_loader = task_data test_loader = task_data['test'] # n_train_samples = len(train_loader['train'].dataset) n_batches = len(train_loader) # Get optimizer: optimizer = optim_func( filter(lambda p: p.requires_grad, post_model.parameters()), optim_args) # optimizer = optim_func(filter(lambda p: p.requires_grad, post_model.parameters()), optim_args['lr']) # ------------------------------------------------------------------------------------------- # Training epoch function # ------------------------------------------------------------------------------------------- def run_train_epoch(i_epoch): # log_interval = 500 post_model.train() train_iterators = iter(train_loader['train']) for batch_idx, batch_data in enumerate(train_loader['train']): task_loss, info = get_objective(prior_model, prm, [train_loader], object.feval, [train_iterators], [post_model], loss_criterion, 1, [0]) grad_step(task_loss[0], post_model, loss_criterion, optimizer, prm, train_iterators, train_loader['train'], lr_schedule, prm.optim_args['lr'], i_epoch) # for log_var in post_model.parameters(): # if log_var.requires_grad is False: # log_var.data = log_var.data - (i_epoch + 1) * math.log(1 + prm.gamma1) # Print status: log_interval = 10 if (batch_idx) % log_interval == 0: batch_acc = info['correct_count'] / info['sample_count'] print( cmn.status_string(i_epoch, prm.n_meta_train_epochs, batch_idx, n_batches, batch_acc) + ' Empiric-Loss: {:.4f}'.format(info['avg_empirical_loss'])) # -----------------------------------------------------------------------------------------------------------# # Update Log file if verbose == 1: write_to_log( 'Total number of steps: {}'.format(n_batches * prm.n_meta_test_epochs), prm) # ------------------------------------------------------------------------------------------- # Run epochs # ------------------------------------------------------------------------------------------- start_time = timeit.default_timer() # Training loop: for i_epoch in range(prm.n_meta_test_epochs): run_train_epoch(i_epoch) # Test: test_acc, test_loss = run_test_Bayes(post_model, test_loader, loss_criterion, prm) stop_time = timeit.default_timer() cmn.write_final_result(test_acc, stop_time - start_time, prm, result_name=prm.test_type, verbose=verbose) test_err = 1 - test_acc return test_err, post_model
def run_meta_learning(data_loaders, prm): # ------------------------------------------------------------------------------------------- # Setting-up # ------------------------------------------------------------------------------------------- # Unpack parameters: optim_func, optim_args, lr_schedule =\ prm.optim_func, prm.optim_args, prm.lr_schedule # Loss criterion loss_criterion = get_loss_criterion(prm.loss_type) n_train_tasks = len(data_loaders) # Create a 'dummy' model to generate the set of parameters of the shared prior: prior_model = get_model(prm) # Create posterior models for each task: posteriors_models = [ transfer_weights(prior_model, get_model(prm)) for _ in range(n_train_tasks) ] # Gather all tasks posterior params: # all_post_param = sum([list(posterior_model.parameters()) for posterior_model in posteriors_models], []) # Create optimizer for all parameters (posteriors + prior) prior_params = filter(lambda p: p.requires_grad, prior_model.parameters()) prior_optimizer = optim_func(prior_params, optim_args) object.grad_init(prm, prior_model, loss_criterion, iter(data_loaders[0]['train']), data_loaders[0]['train'], prior_optimizer) # all_params = all_post_param + prior_params all_posterior_optimizers = [ optim_func( filter(lambda p: p.requires_grad, posteriors_models[i].parameters()), optim_args) for i in range(n_train_tasks) ] # number of sample-batches in each task: n_batch_list = [len(data_loader['train']) for data_loader in data_loaders] n_batches_per_task = np.max(n_batch_list) L = prm.optim_args['L'] # ------------------------------------------------------------------------------------------- # Training epoch function # ------------------------------------------------------------------------------------------- def run_train_epoch(i_epoch): # optim_args['L'] = L-5*i_epoch # For each task, prepare an iterator to generate training batches: train_iterators = [ iter(data_loaders[ii]['train']) for ii in range(n_train_tasks) ] # The task order to take batches from: # The meta-batch will be balanced - i.e, each task will appear roughly the same number of times # note: if some tasks have less data that other tasks - it may be sampled more than once in an epoch task_order = [] task_ids_list = list(range(n_train_tasks)) for i_batch in range(n_batches_per_task): random.shuffle(task_ids_list) task_order += task_ids_list # Note: this method ensures each training sample in each task is drawn in each epoch. # If all the tasks have the same number of sample, then each sample is drawn exactly once in an epoch. # ----------- meta-batches loop (batches of tasks) -----------------------------------# # each meta-batch includes several tasks # we take a grad step with theta after each meta-batch # meta_batch_starts = list(range(0, len(task_order), n_train_tasks)) meta_batch_starts = list(range(0, len(task_order), prm.meta_batch_size)) n_meta_batches = len(meta_batch_starts) for i_meta_batch in range(n_meta_batches): meta_batch_start = meta_batch_starts[i_meta_batch] task_ids_in_meta_batch = task_order[meta_batch_start:( meta_batch_start + prm.meta_batch_size)] # meta-batch size may be less than prm.meta_batch_size at the last one # note: it is OK if some tasks appear several times in the meta-batch mb_data_loaders = [ data_loaders[task_id] for task_id in task_ids_in_meta_batch ] mb_iterators = [ train_iterators[task_id] for task_id in task_ids_in_meta_batch ] mb_posteriors_models = [ posteriors_models[task_id] for task_id in task_ids_in_meta_batch ] #task_loss_list, info = get_objective(prior_model, prm, mb_data_loaders, object.feval, # mb_iterators, mb_posteriors_models, loss_criterion, n_train_tasks, task_ids_in_meta_batch) # Take gradient step with the shared prior and all tasks' posteriors: # for i_task in range(n_train_tasks): # prior_optimizer.zero_grad() #for i_task in range(n_train_tasks): # if isinstance(task_loss_list[i_task], int): # continue # grad_step(task_loss_list[i_task], posteriors_models[i_task], loss_criterion, all_posterior_optimizers[i_task], prm, # train_iterators[i_task], data_loaders[i_task]['train'], lr_schedule, prm.lr, i_epoch) #task_loss_list, info = get_objective(prior_model, prm, mb_data_loaders, object.feval, # mb_iterators, mb_posteriors_models, loss_criterion, n_train_tasks, task_ids_in_meta_batch) # Take gradient step with the shared prior and all tasks' posteriors: # for i_task in range(n_train_tasks): # prior_optimizer.zero_grad() #for i_task in range(n_train_tasks): # if isinstance(task_loss_list[i_task], int): # continue # grad_step(task_loss_list[i_task], posteriors_models[i_task], loss_criterion, all_posterior_optimizers[i_task], prm, # train_iterators[i_task], data_loaders[i_task]['train'], lr_schedule, prm.lr, i_epoch) # Get objective based on tasks in meta-batch: task_loss_list, info = get_objective(prior_model, prm, mb_data_loaders, object.feval, mb_iterators, mb_posteriors_models, loss_criterion, n_train_tasks, task_ids_in_meta_batch) # Take gradient step with the shared prior and all tasks' posteriors: # for i_task in range(n_train_tasks): prior_optimizer.zero_grad() for i_task in range(n_train_tasks): if isinstance(task_loss_list[i_task], int): continue grad_step(task_loss_list[i_task], posteriors_models[i_task], loss_criterion, all_posterior_optimizers[i_task], prm, train_iterators[i_task], data_loaders[i_task]['train'], lr_schedule, prm.lr, i_epoch) # if i_meta_batch==n_meta_batches-1: # if i_epoch == prm.n_meta_train_epochs-1: prior_get_grad(prior_optimizer, all_posterior_optimizers[i_task]) # task_loss_list, info = get_objective(prior_model, prm, mb_data_loaders, object.feval, # mb_iterators, mb_posteriors_models, loss_criterion, n_train_tasks, task_ids_in_meta_batch) # prior_grad_step(prior_optimizer, prm.meta_batch_size, prm,prm.prior_lr_schedule, prm.prior_lr, i_epoch) prior_updates(prior_optimizer, n_train_tasks, prm) for post_model in posteriors_models: post_model.load_state_dict(prior_model.state_dict()) # Print status: log_interval = 10 if (i_meta_batch) % log_interval == 0: batch_acc = info['correct_count'] / info['sample_count'] print( cmn.status_string(i_epoch, prm.n_meta_train_epochs, i_meta_batch, n_meta_batches, batch_acc) + ' Empiric-Loss: {:.4f}'.format(info['avg_empirical_loss'])) # for i in range(20): # prior_grad_step(prior_optimizer, prm.meta_batch_size, prm, lr_schedule, prm.prior_lr, i_epoch) # end meta-batches loop # end run_epoch() # ------------------------------------------------------------------------------------------- # Test evaluation function - # Evaluate the mean loss on samples from the test sets of the training tasks # -------------------------------------------------------------------------------------------- def run_test(): test_acc_avg = 0.0 n_tests = 0 for i_task in range(n_train_tasks): model = posteriors_models[i_task] test_loader = data_loaders[i_task]['test'] if len(test_loader) > 0: test_acc, test_loss = run_test_Bayes(model, test_loader, loss_criterion, prm) n_tests += 1 test_acc_avg += test_acc n_test_samples = len(test_loader.dataset) write_to_log( 'Train Task {}, Test set: {} - Average loss: {:.4}, Accuracy: {:.3} (of {} samples)\n' .format(i_task, prm.test_type, test_loss, test_acc, n_test_samples), prm) else: print('Train Task {}, Test set: {} - No test data'.format( i_task, prm.test_type)) if n_tests > 0: test_acc_avg /= n_tests return test_acc_avg # -----------------------------------------------------------------------------------------------------------# # Main script # -----------------------------------------------------------------------------------------------------------# # Update Log file write_to_log(cmn.get_model_string(prior_model), prm) write_to_log('---- Meta-Training set: {0} tasks'.format(len(data_loaders)), prm) # ------------------------------------------------------------------------------------------- # Run epochs # ------------------------------------------------------------------------------------------- start_time = timeit.default_timer() # Training loop: for i_epoch in range(prm.n_meta_train_epochs): # if (i_epoch+1) % 50 == 0: # prm.lr = prm.lr/2 # for post_model in posteriors_models: # post_model.load_state_dict(prior_model.state_dict()) run_train_epoch(i_epoch) # for post_model in posteriors_models: # post_model.load_state_dict(prior_model.state_dict()) # prior_update(prior_optimizer,prm.meta_batch_size,prm) stop_time = timeit.default_timer() # Test: test_acc_avg = run_test() # Update Log file: cmn.write_final_result(test_acc_avg, stop_time - start_time, prm, result_name=prm.test_type) # Return learned prior: return prior_model
def run_learning(task_data, prior_model, prm, init_from_prior=True, verbose=1): # ------------------------------------------------------------------------------------------- # Setting-up # ------------------------------------------------------------------------------------------- # Unpack parameters: optim_func, optim_args, lr_schedule =\ prm.optim_func, prm.optim_args, prm.lr_schedule # Loss criterion loss_criterion = get_loss_func(prm) # Create posterior model for the new task: post_model = get_model(prm) if init_from_prior: post_model.load_state_dict(prior_model.state_dict()) # prior_model_dict = prior_model.state_dict() # post_model_dict = post_model.state_dict() # # # filter out unnecessary keys: # prior_model_dict = {k: v for k, v in prior_model_dict.items() if '_log_var' in k or '_mu' in k} # # overwrite entries in the existing state dict: # post_model_dict.update(prior_model_dict) # # # # load the new state dict # post_model.load_state_dict(post_model_dict) # add_noise_to_model(post_model, prm.kappa_factor) # The data-sets of the new task: train_loader = task_data['train'] test_loader = task_data['test'] n_train_samples = len(train_loader.dataset) n_batches = len(train_loader) # Get optimizer: optimizer = optim_func(post_model.parameters(), **optim_args) # ------------------------------------------------------------------------------------------- # Training epoch function # ------------------------------------------------------------------------------------------- def run_train_epoch(i_epoch): log_interval = 500 post_model.train() for batch_idx, batch_data in enumerate(train_loader): # get batch data: inputs, targets = data_gen.get_batch_vars(batch_data, prm) batch_size = inputs.shape[0] correct_count = 0 sample_count = 0 # Monte-Carlo iterations: n_MC = prm.n_MC avg_empiric_loss = 0 complexity_term = 0 for i_MC in range(n_MC): # Calculate empirical loss: outputs = post_model(inputs) avg_empiric_loss_curr = (1 / batch_size) * loss_criterion( outputs, targets) # complexity_curr = get_task_complexity(prm, prior_model, post_model, # n_train_samples, avg_empiric_loss_curr) avg_empiric_loss += (1 / n_MC) * avg_empiric_loss_curr # complexity_term += (1 / n_MC) * complexity_curr correct_count += count_correct(outputs, targets) sample_count += inputs.size(0) # end monte-carlo loop complexity_term = get_task_complexity(prm, prior_model, post_model, n_train_samples, avg_empiric_loss) # Approximated total objective (for current batch): if prm.complexity_type == 'Variational_Bayes': # note that avg_empiric_loss_per_task is estimated by an average over batch samples, # but its weight in the objective should be considered by how many samples there are total in the task total_objective = avg_empiric_loss * ( n_train_samples) + complexity_term else: total_objective = avg_empiric_loss + complexity_term # Take gradient step with the posterior: grad_step(total_objective, optimizer, lr_schedule, prm.lr, i_epoch) # Print status: if batch_idx % log_interval == 0: batch_acc = correct_count / sample_count print( cmn.status_string(i_epoch, prm.n_meta_test_epochs, batch_idx, n_batches, batch_acc, total_objective.item()) + ' Empiric Loss: {:.4}\t Intra-Comp. {:.4}'.format( avg_empiric_loss.item(), complexity_term.item())) # end batch loop # end run_train_epoch() # -----------------------------------------------------------------------------------------------------------# # Update Log file if verbose == 1: write_to_log( 'Total number of steps: {}'.format(n_batches * prm.n_meta_test_epochs), prm) # ------------------------------------------------------------------------------------------- # Run epochs # ------------------------------------------------------------------------------------------- start_time = timeit.default_timer() # Training loop: for i_epoch in range(prm.n_meta_test_epochs): run_train_epoch(i_epoch) # Test: test_acc, test_loss = run_eval_Bayes(post_model, test_loader, prm) stop_time = timeit.default_timer() cmn.write_final_result(test_acc, stop_time - start_time, prm, result_name=prm.test_type, verbose=verbose) test_err = 1 - test_acc return test_err, post_model
def run_learning(data_loader, prm, prior_model=None, init_from_prior=True, verbose=1): # ------------------------------------------------------------------------------------------- # Setting-up # ------------------------------------------------------------------------------------------- # Unpack parameters: optim_func, optim_args, lr_schedule = \ prm.optim_func, prm.optim_args, prm.lr_schedule # Loss criterion loss_criterion = get_loss_criterion(prm.loss_type) train_loader = data_loader['train'] test_loader = data_loader['test'] n_batches = len(train_loader) n_train_samples = data_loader['n_train_samples'] # get model: if prior_model and init_from_prior: # init from prior model: post_model = deepcopy(prior_model) else: post_model = get_model(prm) # post_model.set_eps_std(0.0) # DEBUG: turn off randomness # Get optimizer: optimizer = optim_func(post_model.parameters(), **optim_args) # ------------------------------------------------------------------------------------------- # Training epoch function # ------------------------------------------------------------------------------------------- def run_train_epoch(i_epoch): # # Adjust randomness (eps_std) # if hasattr(prm, 'use_randomness_schedeule') and prm.use_randomness_schedeule: # if i_epoch > prm.randomness_full_epoch: # eps_std = 1.0 # elif i_epoch > prm.randomness_init_epoch: # eps_std = (i_epoch - prm.randomness_init_epoch) / (prm.randomness_full_epoch - prm.randomness_init_epoch) # else: # eps_std = 0.0 # turn off randomness # post_model.set_eps_std(eps_std) # post_model.set_eps_std(0.00) # debug complexity_term = 0 post_model.train() for batch_idx, batch_data in enumerate(train_loader): # Monte-Carlo iterations: empirical_loss = 0 n_MC = prm.n_MC # get batch: inputs, targets = data_gen.get_batch_vars(batch_data, prm) for i_MC in range(n_MC): # calculate objective: outputs = post_model(inputs) empirical_loss_c = loss_criterion(outputs, targets) empirical_loss += (1 / n_MC) * empirical_loss_c # complexity/prior term: if prior_model: empirical_loss, complexity_term = get_bayes_task_objective( prm, prior_model, post_model, n_train_samples, empirical_loss) else: complexity_term = 0.0 # Total objective: objective = empirical_loss + complexity_term # Take gradient step: grad_step(objective, optimizer, lr_schedule, prm.lr, i_epoch) # Print status: log_interval = 500 if batch_idx % log_interval == 0: batch_acc = correct_rate(outputs, targets) print(cmn.status_string(i_epoch, prm.num_epochs, batch_idx, n_batches, batch_acc, get_value(objective)) + ' Loss: {:.4}\t Comp.: {:.4}'.format(get_value(empirical_loss), get_value(complexity_term))) # ------------------------------------------------------------------------------------------- # Main Script # ------------------------------------------------------------------------------------------- # Update Log file update_file = not verbose == 0 cmn.write_to_log(cmn.get_model_string(post_model), prm, update_file=update_file) cmn.write_to_log('Total number of steps: {}'.format(n_batches * prm.num_epochs), prm, update_file=update_file) cmn.write_to_log('Number of training samples: {}'.format(data_loader['n_train_samples']), prm, update_file=update_file) start_time = timeit.default_timer() # Run training epochs: for i_epoch in range(prm.num_epochs): run_train_epoch(i_epoch) # Test: test_acc, test_loss = run_test_Bayes(post_model, test_loader, loss_criterion, prm) stop_time = timeit.default_timer() cmn.write_final_result(test_acc, stop_time - start_time, prm, result_name=prm.test_type) test_err = 1 - test_acc return test_err, post_model
train_dataset, test_dataset, info = load_pretrain_dataset() train_loader = DataLoader(train_dataset, batch_size=bz, shuffle=True, num_workers=12, pin_memory=True) print(len(train_dataset), len(test_dataset)) test_loader = DataLoader(test_dataset, batch_size=bz, shuffle=True, num_workers=12, pin_memory=True) save_dir = "pretrained_cifar100" os.makedirs(save_dir, exist_ok=True) net = get_model(prm) #load_model_state(net, save_dir + "/" + "epoch-2-acc0.277.pth") #debug() print(net) net = net.cuda() loss_fn = nn.CrossEntropyLoss() learning_rate = 1e-3 optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate) for epoch in range(epoch_num): cnt = 0 for imgs, ys in train_loader: cnt += 1