예제 #1
0
    def connectIntermediateLayers(self, layersToConnect,
                                  inputSampleInFullyCN_Train,
                                  inputSampleInFullyCN_Test,
                                  featMapsInFullyCN):

        centralVoxelsTrain = self.centralVoxelsTrain
        centralVoxelsTest = self.centralVoxelsTest

        for l_i in layersToConnect:
            currentLayer = self.networkLayers[l_i]
            output_train = currentLayer.outputTrain
            output_trainShape = currentLayer.outputShapeTrain
            output_test = currentLayer.outputTest
            output_testShape = currentLayer.outputShapeTest

            # Get the middle part of feature maps at intermediate levels to make them of the same shape at the beginning of the
            # first fully connected layer
            featMapsCenter_Train = extractCenterFeatMaps(
                output_train, output_trainShape, centralVoxelsTrain)
            featMapsCenter_Test = extractCenterFeatMaps(
                output_test, output_testShape, centralVoxelsTest)

            featMapsInFullyCN = featMapsInFullyCN + currentLayer._numberOfFeatureMaps
            inputSampleInFullyCN_Train = T.concatenate(
                [inputSampleInFullyCN_Train, featMapsCenter_Train], axis=1)
            inputSampleInFullyCN_Test = T.concatenate(
                [inputSampleInFullyCN_Test, featMapsCenter_Test], axis=1)

        return [
            featMapsInFullyCN, inputSampleInFullyCN_Train,
            inputSampleInFullyCN_Test
        ]
예제 #2
0
    def connectIntermediateLayers(self,
                                  layersToConnect,
                                  inputSampleInFullyCN_Train,
                                  inputSampleInFullyCN_Test,
                                  featMapsInFullyCN):

        centralVoxelsTrain = self.centralVoxelsTrain
        centralVoxelsTest = self.centralVoxelsTest
    
        for l_i in layersToConnect :
            currentLayer = self.networkLayers[l_i]
            output_train = currentLayer.outputTrain
            output_trainShape = currentLayer.outputShapeTrain
            output_test = currentLayer.outputTest
            output_testShape = currentLayer.outputShapeTest

            # Get the middle part of feature maps at intermediate levels to make them of the same shape at the beginning of the
            # first fully connected layer
            featMapsCenter_Train = extractCenterFeatMaps(output_train, output_trainShape, centralVoxelsTrain)
            featMapsCenter_Test  = extractCenterFeatMaps(output_test, output_testShape, centralVoxelsTest)

            featMapsInFullyCN = featMapsInFullyCN + currentLayer._numberOfFeatureMaps
            inputSampleInFullyCN_Train = T.concatenate([inputSampleInFullyCN_Train, featMapsCenter_Train], axis=1)
            inputSampleInFullyCN_Test = T.concatenate([inputSampleInFullyCN_Test, featMapsCenter_Test], axis=1)

        return [featMapsInFullyCN, inputSampleInFullyCN_Train, inputSampleInFullyCN_Test]
    def generateNetworkLayers(self,
                            cnnLayers,
                            kernel_Shapes,
                            maxPooling_Layer,
                            sampleShape_Train,
                            sampleShape_Test,
                            inputSample_Train,
                            inputSample_Train_Bottom,
                            inputSample_Test,
                            inputSample_Test_Bottom,
                            layersToConnect):

        rng = np.random.RandomState(24575)
     
        # Define inputs for first layers (which will be re-used for next layers)
        inputSampleToNextLayer_Train = inputSample_Train
        inputSampleToNextLayer_Test = inputSample_Test
        inputSampleToNextLayer_Train_Bottom = inputSample_Train_Bottom
        inputSampleToNextLayer_Test_Bottom = inputSample_Test_Bottom
        inputSampleToNextLayerShape_Train = sampleShape_Train
        inputSampleToNextLayerShape_Test = sampleShape_Test

        # Get the convolutional layers
        numLayers = len(kernel_Shapes)
        numberCNNLayers = []
        numberFCLayers = []
        for l_i in range(1,len(kernel_Shapes)):
            if len(kernel_Shapes[l_i]) == 3:
                numberCNNLayers = l_i + 1

        numberFCLayers = numLayers - numberCNNLayers
        
        ######### -------------- Generate the convolutional layers --------------   #########
        # Some checks
        if self.weight_Initialization_CNN == 2:
            if len(self.weightsTrainedIdx) <> numberCNNLayers:
                print(" ... WARNING!!!! Number of indexes specified for trained layers does not correspond with number of conv layers in the created architecture...")

        if self.weight_Initialization_CNN == 2:
            weightsNames = getWeightsSet(self.weightsFolderName, self.weightsTrainedIdx)
            
        for l_i in xrange(0, numberCNNLayers) :
            
            # Get properties of this layer
            # The second element is the number of feature maps of previous layer
            currentLayerKernelShape = [cnnLayers[l_i], inputSampleToNextLayerShape_Train[1]] +  kernel_Shapes[l_i] 

            # If weights are going to be initialized from other pre-trained network they should be loaded in this stage
            # Otherwise
            weights = []
            if self.weight_Initialization_CNN == 2:
                weights = np.load(weightsNames[l_i])

            maxPoolingParameters = []
            dropoutRate = 0.0
            ### TOP ##
            myLiviaNet3DConvLayerTop = LiviaNet3DConvLayer.LiviaNet3DConvLayer(rng,
                                                                            l_i,
                                                                            inputSampleToNextLayer_Train,
                                                                            inputSampleToNextLayer_Test,
                                                                            inputSampleToNextLayerShape_Train,
                                                                            inputSampleToNextLayerShape_Test,
                                                                            currentLayerKernelShape,
                                                                            self.applyBatchNorm,
                                                                            self.numberEpochToApplyBatchNorm,
                                                                            maxPoolingParameters,
                                                                            self.weight_Initialization_CNN,
                                                                            weights,
                                                                            self.activationType,
                                                                            dropoutRate
                                                                            )
                                                                            
            self.networkLayers.append(myLiviaNet3DConvLayerTop)
            
            ## BOTTOM ##
            myLiviaNet3DConvLayerBottom = LiviaNet3DConvLayer.LiviaNet3DConvLayer(rng,
                                                                            l_i,
                                                                            inputSampleToNextLayer_Train_Bottom,
                                                                            inputSampleToNextLayer_Test_Bottom,
                                                                            inputSampleToNextLayerShape_Train,
                                                                            inputSampleToNextLayerShape_Test,
                                                                            currentLayerKernelShape,
                                                                            self.applyBatchNorm,
                                                                            self.numberEpochToApplyBatchNorm,
                                                                            maxPoolingParameters,
                                                                            self.weight_Initialization_CNN,
                                                                            weights,
                                                                            self.activationType,
                                                                            dropoutRate
                                                                            )
                                                                            
            self.networkLayers.append(myLiviaNet3DConvLayerBottom)
            # Just for printing
            inputSampleToNextLayer_Train_Old = inputSampleToNextLayerShape_Train
            inputSampleToNextLayer_Test_Old  = inputSampleToNextLayerShape_Test
            
            # Update inputs for next layer
            inputSampleToNextLayer_Train = myLiviaNet3DConvLayerTop.outputTrain
            inputSampleToNextLayer_Test  = myLiviaNet3DConvLayerTop.outputTest 
            
            inputSampleToNextLayer_Train_Bottom = myLiviaNet3DConvLayerBottom.outputTrain
            inputSampleToNextLayer_Test_Bottom  = myLiviaNet3DConvLayerBottom.outputTest    
    
            inputSampleToNextLayerShape_Train = myLiviaNet3DConvLayerTop.outputShapeTrain
            inputSampleToNextLayerShape_Test  = myLiviaNet3DConvLayerTop.outputShapeTest
            
            print(" ----- (Training) Input shape: {}  ---> Output shape: {}  ||  kernel shape {}".format(inputSampleToNextLayer_Train_Old,inputSampleToNextLayerShape_Train, currentLayerKernelShape))
            print(" ----- (Testing) Input shape: {}   ---> Output shape: {}".format(inputSampleToNextLayer_Test_Old,inputSampleToNextLayerShape_Test))


        ### Create the semi-dense connectivity         
        centralVoxelsTrain = self.centralVoxelsTrain
        centralVoxelsTest = self.centralVoxelsTest
    
        numLayersPerPath = len(self.networkLayers)/2
        
        featMapsInFullyCN = 0
        # ------- TOP -------- #
        print(" ----------- TOP PATH ----------------")
        for l_i in xrange(0,numLayersPerPath-1) :
            print('   --- concatennating layer {} ...'.format(str(l_i)))
            currentLayer = self.networkLayers[2*l_i] # to access the layers from the top path
            output_train = currentLayer.outputTrain
            output_trainShape = currentLayer.outputShapeTrain
            output_test = currentLayer.outputTest
            output_testShape = currentLayer.outputShapeTest

            # Get the middle part of feature maps at intermediate levels to make them of the same shape at the beginning of the
            # first fully connected layer
            featMapsCenter_Train = extractCenterFeatMaps(output_train, output_trainShape, centralVoxelsTrain)
            featMapsCenter_Test  = extractCenterFeatMaps(output_test, output_testShape, centralVoxelsTest)

            featMapsInFullyCN = featMapsInFullyCN + currentLayer._numberOfFeatureMaps
            inputSampleToNextLayer_Train = T.concatenate([inputSampleToNextLayer_Train, featMapsCenter_Train], axis=1)
            inputSampleToNextLayer_Test = T.concatenate([inputSampleToNextLayer_Test, featMapsCenter_Test], axis=1)
        
        # ------- Bottom -------- #
        print(" ---------- BOTTOM PATH ---------------")
        for l_i in xrange(0,numLayersPerPath-1) :
            print('   --- concatennating layer {} ...'.format(str(l_i)))
            currentLayer = self.networkLayers[2*l_i+1] # to access the layers from the bottom path
            output_train = currentLayer.outputTrain
            output_trainShape = currentLayer.outputShapeTrain
            output_test = currentLayer.outputTest
            output_testShape = currentLayer.outputShapeTest

            # Get the middle part of feature maps at intermediate levels to make them of the same shape at the beginning of the
            # first fully connected layer
            featMapsCenter_Train = extractCenterFeatMaps(output_train, output_trainShape, centralVoxelsTrain)
            featMapsCenter_Test  = extractCenterFeatMaps(output_test, output_testShape, centralVoxelsTest)

            featMapsInFullyCN = featMapsInFullyCN + currentLayer._numberOfFeatureMaps
            inputSampleToNextLayer_Train_Bottom = T.concatenate([inputSampleToNextLayer_Train_Bottom, featMapsCenter_Train], axis=1)
            inputSampleToNextLayer_Test_Bottom = T.concatenate([inputSampleToNextLayer_Test_Bottom, featMapsCenter_Test], axis=1)
                

        ######### --------------  Generate the Fully Connected Layers  ----------------- ##################
        inputToFullyCN_Train = inputSampleToNextLayer_Train
        inputToFullyCN_Train = T.concatenate([inputToFullyCN_Train, inputSampleToNextLayer_Train_Bottom], axis=1)
        
        inputToFullyCN_Test = inputSampleToNextLayer_Test
        inputToFullyCN_Test = T.concatenate([inputToFullyCN_Test, inputSampleToNextLayer_Test_Bottom], axis=1)
        
        featMapsInFullyCN = featMapsInFullyCN + inputSampleToNextLayerShape_Train[1] * 2 # Because we have two symmetric paths
        # Define inputs
        inputFullyCNShape_Train = [self.batch_Size, featMapsInFullyCN] + inputSampleToNextLayerShape_Train[2:5]
        inputFullyCNShape_Test = [self.batch_Size, featMapsInFullyCN] + inputSampleToNextLayerShape_Test[2:5]

        # Kamnitsas applied padding and mirroring to the images when kernels in FC layers were larger than 1x1x1.
        # For this current work, we employed kernels of this size (i.e. 1x1x1), so there is no need to apply padding or mirroring.
        # TODO. Check
        
        print(" --- Starting to create the fully connected layers....")
        for l_i in xrange(numberCNNLayers, numLayers) :
            numberOfKernels = cnnLayers[l_i]
            kernel_shape = [kernel_Shapes[l_i][0],kernel_Shapes[l_i][0],kernel_Shapes[l_i][0]]
            
            currentLayerKernelShape = [cnnLayers[l_i], inputFullyCNShape_Train[1]] +  kernel_shape
            
            # If weights are going to be initialized from other pre-trained network they should be loaded in this stage
            # Otherwise

            weights = []
            applyBatchNorm = True
            epochsToApplyBatchNorm = 60
            maxPoolingParameters = []
            dropoutRate = self.dropout_Rates[l_i-numberCNNLayers]
            myLiviaNet3DFullyConnectedLayer = LiviaNet3DConvLayer.LiviaNet3DConvLayer(rng,
                                                                            l_i,
                                                                            inputToFullyCN_Train,
                                                                            inputToFullyCN_Test,
                                                                            inputFullyCNShape_Train,
                                                                            inputFullyCNShape_Test,
                                                                            currentLayerKernelShape,
                                                                            self.applyBatchNorm,
                                                                            self.numberEpochToApplyBatchNorm,
                                                                            maxPoolingParameters,
                                                                            self.weight_Initialization_FCN,
                                                                            weights,
                                                                            self.activationType,
                                                                            dropoutRate
                                                                            )

            self.networkLayers.append(myLiviaNet3DFullyConnectedLayer)
            
            # Just for printing
            inputFullyCNShape_Train_Old = inputFullyCNShape_Train
            inputFullyCNShape_Test_Old  = inputFullyCNShape_Test
            
            # Update inputs for next layer
            inputToFullyCN_Train = myLiviaNet3DFullyConnectedLayer.outputTrain
            inputToFullyCN_Test = myLiviaNet3DFullyConnectedLayer.outputTest    

            inputFullyCNShape_Train = myLiviaNet3DFullyConnectedLayer.outputShapeTrain
            inputFullyCNShape_Test = myLiviaNet3DFullyConnectedLayer.outputShapeTest
 
            # Print
            print(" ----- (Training) Input shape: {}  ---> Output shape: {}  ||  kernel shape {}".format(inputFullyCNShape_Train_Old,inputFullyCNShape_Train, currentLayerKernelShape))
            print(" ----- (Testing) Input shape: {}   ---> Output shape: {}".format(inputFullyCNShape_Test_Old,inputFullyCNShape_Test))
        
        
        ######### -------------- Do Classification layer  ----------------- ##################

        # Define kernel shape for classification layer
        featMaps_LastLayer = self.cnnLayers[-1]
        filterShape_ClassificationLayer = [self.n_classes, featMaps_LastLayer, 1, 1, 1]

        # Define inputs and shapes for the classification layer
        inputImageClassificationLayer_Train = inputToFullyCN_Train
        inputImageClassificationLayer_Test = inputToFullyCN_Test

        inputImageClassificationLayerShape_Train = inputFullyCNShape_Train
        inputImageClassificationLayerShape_Test = inputFullyCNShape_Test
        
        print(" ----- (Classification layer) kernel shape {}".format(filterShape_ClassificationLayer))
        classification_layer_Index = l_i

        weights = []
        applyBatchNorm = True
        epochsToApplyBatchNorm = 60
        maxPoolingParameters = []
        dropoutRate = self.dropout_Rates[len(self.dropout_Rates)-1]
        softmaxTemperature = 1.0
                                                                              
        myLiviaNet_ClassificationLayer = LiviaSoftmax.LiviaSoftmax(rng,
                                                                   classification_layer_Index,
                                                                   inputImageClassificationLayer_Train,
                                                                   inputImageClassificationLayer_Test,
                                                                   inputImageClassificationLayerShape_Train,
                                                                   inputImageClassificationLayerShape_Test,
                                                                   filterShape_ClassificationLayer,
                                                                   self.applyBatchNorm,
                                                                   self.numberEpochToApplyBatchNorm,
                                                                   maxPoolingParameters,
                                                                   self.weight_Initialization_FCN,
                                                                   weights,
                                                                   0, #self.activationType,
                                                                   dropoutRate,
                                                                   softmaxTemperature
                                                                   )
                       
        self.networkLayers.append(myLiviaNet_ClassificationLayer)
        self.lastLayer = myLiviaNet_ClassificationLayer
        
        print(" ----- (Training) Input shape: {}  ---> Output shape: {}  ||  kernel shape {}".format(inputImageClassificationLayerShape_Train,myLiviaNet_ClassificationLayer.outputShapeTrain, filterShape_ClassificationLayer))
        print(" ----- (Testing) Input shape:  {}  ---> Output shape: {}".format(inputImageClassificationLayerShape_Test,myLiviaNet_ClassificationLayer.outputShapeTest))
    def generateNetworkLayers(self, cnnLayers, kernel_Shapes, maxPooling_Layer,
                              sampleShape_Train, sampleShape_Test,
                              inputSample_Train, inputSample_Train_Bottom,
                              inputSample_Test, inputSample_Test_Bottom,
                              layersToConnect):

        rng = np.random.RandomState(24575)

        # Define inputs for first layers (which will be re-used for next layers)
        inputSampleToNextLayer_Train = inputSample_Train
        inputSampleToNextLayer_Test = inputSample_Test
        inputSampleToNextLayer_Train_Bottom = inputSample_Train_Bottom
        inputSampleToNextLayer_Test_Bottom = inputSample_Test_Bottom
        inputSampleToNextLayerShape_Train = sampleShape_Train
        inputSampleToNextLayerShape_Test = sampleShape_Test

        # Get the convolutional layers
        numLayers = len(kernel_Shapes)
        numberCNNLayers = []
        numberFCLayers = []
        for l_i in range(1, len(kernel_Shapes)):
            if len(kernel_Shapes[l_i]) == 3:
                numberCNNLayers = l_i + 1

        numberFCLayers = numLayers - numberCNNLayers

        ######### -------------- Generate the convolutional layers --------------   #########
        # Some checks
        if self.weight_Initialization_CNN == 2:
            if len(self.weightsTrainedIdx) <> numberCNNLayers:
                print(
                    " ... WARNING!!!! Number of indexes specified for trained layers does not correspond with number of conv layers in the created architecture..."
                )

        if self.weight_Initialization_CNN == 2:
            weightsNames = getWeightsSet(self.weightsFolderName,
                                         self.weightsTrainedIdx)

        numberOfOutputKernels = [0]
        for l_i in xrange(0, numberCNNLayers):

            # Get properties of this layer
            # The second element is the number of feature maps of previous layer
            currentLayerKernelShape = [
                cnnLayers[l_i], inputSampleToNextLayerShape_Train[1]
            ] + kernel_Shapes[l_i]

            # If weights are going to be initialized from other pre-trained network they should be loaded in this stage
            # Otherwise
            weights = []
            if self.weight_Initialization_CNN == 2:
                weights = np.load(weightsNames[l_i])

            maxPoolingParameters = []
            dropoutRate = 0.0
            ### TOP ##
            print('--' * 50)
            print(' **** TOP ****')
            myLiviaNet3DConvLayerTop = HyperDenseNetConvLayer.HyperDenseNetConvLayer(
                rng, l_i, inputSampleToNextLayer_Train,
                inputSampleToNextLayer_Test, inputSampleToNextLayerShape_Train,
                inputSampleToNextLayerShape_Test, currentLayerKernelShape,
                self.applyBatchNorm, self.numberEpochToApplyBatchNorm,
                maxPoolingParameters, self.weight_Initialization_CNN, weights,
                self.activationType, dropoutRate)

            self.networkLayers.append(myLiviaNet3DConvLayerTop)
            numberOfOutputKernels.append(
                myLiviaNet3DConvLayerTop.outputShapeTrain[1])

            ## BOTTOM ##
            print(' **** BOTTOM ****')
            myLiviaNet3DConvLayerBottom = HyperDenseNetConvLayer.HyperDenseNetConvLayer(
                rng, l_i, inputSampleToNextLayer_Train_Bottom,
                inputSampleToNextLayer_Test_Bottom,
                inputSampleToNextLayerShape_Train,
                inputSampleToNextLayerShape_Test, currentLayerKernelShape,
                self.applyBatchNorm, self.numberEpochToApplyBatchNorm,
                maxPoolingParameters, self.weight_Initialization_CNN, weights,
                self.activationType, dropoutRate)

            self.networkLayers.append(myLiviaNet3DConvLayerBottom)

            # Update inputs for next layer
            #inputSampleToNextLayer_Train = myLiviaNet3DConvLayerTop.outputTrain
            #inputSampleToNextLayer_Test  = myLiviaNet3DConvLayerTop.outputTest

            #inputSampleToNextLayer_Train_Bottom = myLiviaNet3DConvLayerBottom.outputTrain
            #inputSampleToNextLayer_Test_Bottom  = myLiviaNet3DConvLayerBottom.outputTest

            #inputSampleToNextLayerShape_Train = myLiviaNet3DConvLayerTop.outputShapeTrain
            #inputSampleToNextLayerShape_Test  = myLiviaNet3DConvLayerTop.outputShapeTest

            # ~~~~~~~ Make here the dense connections ~~~~~~~~~~~
            print("           -Output Layer shape: {}".format(
                myLiviaNet3DConvLayerTop.outputShapeTrain))

            shapeTrain = []
            shapeTrain.append(myLiviaNet3DConvLayerTop.outputShapeTrain[0])
            shapeTrain.append(myLiviaNet3DConvLayerTop.outputShapeTrain[1])
            shapeTrain.append(myLiviaNet3DConvLayerTop.outputShapeTrain[2])
            shapeTrain.append(myLiviaNet3DConvLayerTop.outputShapeTrain[3])
            shapeTrain.append(myLiviaNet3DConvLayerTop.outputShapeTrain[4])

            shapeTest = []
            shapeTest.append(myLiviaNet3DConvLayerTop.outputShapeTest[0])
            shapeTest.append(myLiviaNet3DConvLayerTop.outputShapeTest[1])
            shapeTest.append(myLiviaNet3DConvLayerTop.outputShapeTest[2])
            shapeTest.append(myLiviaNet3DConvLayerTop.outputShapeTest[3])
            shapeTest.append(myLiviaNet3DConvLayerTop.outputShapeTest[4])

            # Define the sizes of the convolutional layers (denselly connected)
            denseInputNextLayerShape = shapeTrain
            denseInputNextLayerShapeTesting = shapeTest

            print("          -Adding Dense connections....")
            numLayersPerPath = len(self.networkLayers) / 2
            for d_l in xrange(numLayersPerPath):
                denseInputNextLayerShape[1] = denseInputNextLayerShape[
                    1] + numberOfOutputKernels[d_l]
                denseInputNextLayerShapeTesting[
                    1] = denseInputNextLayerShapeTesting[
                        1] + numberOfOutputKernels[d_l]

            denseInputNextLayerShape[1] = 2 * denseInputNextLayerShape[1]
            denseInputNextLayerShapeTesting[
                1] = 2 * denseInputNextLayerShapeTesting[1]

            print("          -denseInput Next Layer shape: {}".format(
                denseInputNextLayerShape))

            inputSampleToNextLayerShape_Train = denseInputNextLayerShape
            inputSampleToNextLayerShape_Test = denseInputNextLayerShapeTesting

            numberOfCentralVoxelsToGetTraining = inputSampleToNextLayerShape_Train[
                2:5]
            numberOfCentralVoxelsToGetTesting = inputSampleToNextLayerShape_Test[
                2:5]

            # Get first outputs
            #~~~~ TOP ~~~~~~
            inputSampleToNextLayer_Train = myLiviaNet3DConvLayerTop.outputTrain  # inputImageToNextLayer_Top
            inputSampleToNextLayer_Test = myLiviaNet3DConvLayerTop.outputTest  # inputImageToNextLayerTesting_Top

            #~~~~ BOTTOM ~~~~~~
            inputSampleToNextLayer_Train_Bottom = myLiviaNet3DConvLayerBottom.outputTrain  # inputImageToNextLayer_Bottom
            inputSampleToNextLayer_Test_Bottom = myLiviaNet3DConvLayerBottom.outputTest  # inputImageToNextLayerTesting_Bottom

            print("          ----- Concatennating feature maps.... ----- ")

            # Concatennate feat maps in first layer
            #~~~~ TOP ~~~~~~
            inputImageToNextLayer_Top_Temp = inputSampleToNextLayer_Train
            inputImageToNextLayerTesting_Top_Temp = inputSampleToNextLayer_Test

            inputSampleToNextLayer_Train = T.concatenate(
                [
                    inputSampleToNextLayer_Train,
                    inputSampleToNextLayer_Train_Bottom
                ],
                axis=1)  # inputImageToNextLayer_Top
            inputSampleToNextLayer_Test = T.concatenate(
                [
                    inputSampleToNextLayer_Test,
                    inputSampleToNextLayer_Test_Bottom
                ],
                axis=1)  # inputImageToNextLayerTesting_Top

            #~~~~ BOTTOM ~~~~~~
            inputSampleToNextLayer_Train_Bottom = T.concatenate([
                inputSampleToNextLayer_Train_Bottom,
                inputImageToNextLayer_Top_Temp
            ],
                                                                axis=1)
            inputSampleToNextLayer_Test_Bottom = T.concatenate([
                inputSampleToNextLayer_Test_Bottom,
                inputImageToNextLayerTesting_Top_Temp
            ],
                                                               axis=1)

            # Concatennate feature maps in remaining layers
            for d_l in xrange(0, numLayersPerPath - 1):

                print("           ----> Layer {} ".format(d_l))
                print("           ----> outputShapeTrain {} ".format(
                    self.networkLayers[2 * d_l].outputShapeTrain))

                # ~~~~~ TOP ~~~~ #
                # Training samples
                featMapsCenter_Train_Top = extractCenterFeatMaps(
                    self.networkLayers[2 * d_l].outputTrain,
                    self.networkLayers[2 * d_l].outputShapeTrain,
                    numberOfCentralVoxelsToGetTraining)

                # Testing samples
                featMapsCenter_Test_Top = extractCenterFeatMaps(
                    self.networkLayers[2 * d_l].outputTest,
                    self.networkLayers[2 * d_l].outputShapeTest,
                    numberOfCentralVoxelsToGetTesting)

                # ~~~~~ BOTTOM ~~~~ #
                # Training samples
                featMapsCenter_Train_Bottom = extractCenterFeatMaps(
                    self.networkLayers[2 * d_l + 1].outputTrain,
                    self.networkLayers[2 * d_l + 1].outputShapeTrain,
                    numberOfCentralVoxelsToGetTraining)

                # Testing samples
                featMapsCenter_Test_Bottom = extractCenterFeatMaps(
                    self.networkLayers[2 * d_l + 1].outputTest,
                    self.networkLayers[2 * d_l + 1].outputShapeTest,
                    numberOfCentralVoxelsToGetTesting)

                # ~~~~ TOP ~~~~ #
                # (Dense) Connections with same path
                inputSampleToNextLayer_Train = T.concatenate(
                    [inputSampleToNextLayer_Train, featMapsCenter_Train_Top],
                    axis=1)
                inputSampleToNextLayer_Test = T.concatenate(
                    [inputSampleToNextLayer_Test, featMapsCenter_Test_Top],
                    axis=1)

                # (Dense) Connections with the other path
                inputSampleToNextLayer_Train = T.concatenate([
                    inputSampleToNextLayer_Train, featMapsCenter_Train_Bottom
                ],
                                                             axis=1)
                inputSampleToNextLayer_Test = T.concatenate(
                    [inputSampleToNextLayer_Test, featMapsCenter_Test_Bottom],
                    axis=1)

                # ~~~~ BOTTOM ~~~~ #
                # Connections with same path
                inputSampleToNextLayer_Train_Bottom = T.concatenate([
                    inputSampleToNextLayer_Train_Bottom,
                    featMapsCenter_Train_Bottom
                ],
                                                                    axis=1)
                inputSampleToNextLayer_Test_Bottom = T.concatenate([
                    inputSampleToNextLayer_Test_Bottom,
                    featMapsCenter_Test_Bottom
                ],
                                                                   axis=1)

                # Connections with the other path
                inputSampleToNextLayer_Train_Bottom = T.concatenate([
                    inputSampleToNextLayer_Train_Bottom,
                    featMapsCenter_Train_Top
                ],
                                                                    axis=1)
                inputSampleToNextLayer_Test_Bottom = T.concatenate([
                    inputSampleToNextLayer_Test_Bottom, featMapsCenter_Test_Top
                ],
                                                                   axis=1)

        ######### --------------  Generate the Fully Connected Layers  ----------------- ##################
        inputToFullyCN_Train = inputSampleToNextLayer_Train
        inputToFullyCN_Train = T.concatenate(
            [inputToFullyCN_Train, inputSampleToNextLayer_Train_Bottom],
            axis=1)

        inputToFullyCN_Test = inputSampleToNextLayer_Test
        inputToFullyCN_Test = T.concatenate(
            [inputToFullyCN_Test, inputSampleToNextLayer_Test_Bottom], axis=1)
        featMapsInFullyCN = inputSampleToNextLayerShape_Train[1] * 2

        #featMapsInFullyCN = featMapsInFullyCN + inputSampleToNextLayerShape_Train[1]

        # Define inputs
        inputFullyCNShape_Train = [
            self.batch_Size, featMapsInFullyCN,
            inputSampleToNextLayerShape_Train[2],
            inputSampleToNextLayerShape_Train[3],
            inputSampleToNextLayerShape_Train[4]
        ]
        inputFullyCNShape_Test = [
            self.batch_Size, featMapsInFullyCN,
            inputSampleToNextLayerShape_Test[2],
            inputSampleToNextLayerShape_Test[3],
            inputSampleToNextLayerShape_Test[4]
        ]

        # Kamnitsas applied padding and mirroring to the images when kernels in FC layers were larger than 1x1x1.Jose Dolz. April, 2018.
        # For this current work, we employed kernels of this size (i.e. 1x1x1), so there is no need to apply padding or mirroring.
        # TODO. Check

        print("**" * 50)
        print(" --- Starting to create the fully connected layers....")
        print("**" * 50)

        for l_i in xrange(numberCNNLayers, numLayers):
            numberOfKernels = cnnLayers[l_i]
            kernel_shape = [
                kernel_Shapes[l_i][0], kernel_Shapes[l_i][0],
                kernel_Shapes[l_i][0]
            ]

            currentLayerKernelShape = [
                cnnLayers[l_i], inputFullyCNShape_Train[1]
            ] + kernel_shape
            # If weights are going to be initialized from other pre-trained network they should be loaded in this stage
            # Otherwise
            weights = []
            applyBatchNorm = True
            epochsToApplyBatchNorm = 60
            maxPoolingParameters = []
            dropoutRate = self.dropout_Rates[l_i - numberCNNLayers]
            myLiviaNet3DFullyConnectedLayer = HyperDenseNetConvLayer.HyperDenseNetConvLayer(
                rng, l_i, inputToFullyCN_Train, inputToFullyCN_Test,
                inputFullyCNShape_Train, inputFullyCNShape_Test,
                currentLayerKernelShape, self.applyBatchNorm,
                self.numberEpochToApplyBatchNorm, maxPoolingParameters,
                self.weight_Initialization_FCN, weights, self.activationType,
                dropoutRate)

            self.networkLayers.append(myLiviaNet3DFullyConnectedLayer)

            # Just for printing
            inputFullyCNShape_Train_Old = inputFullyCNShape_Train
            inputFullyCNShape_Test_Old = inputFullyCNShape_Test

            # Update inputs for next layer
            inputToFullyCN_Train = myLiviaNet3DFullyConnectedLayer.outputTrain
            inputToFullyCN_Test = myLiviaNet3DFullyConnectedLayer.outputTest

            inputFullyCNShape_Train = myLiviaNet3DFullyConnectedLayer.outputShapeTrain
            inputFullyCNShape_Test = myLiviaNet3DFullyConnectedLayer.outputShapeTest

            # Print
            print(
                " ----- (Training) Input shape: {}  ---> Output shape: {}  ||  kernel shape {}"
                .format(inputFullyCNShape_Train_Old, inputFullyCNShape_Train,
                        currentLayerKernelShape))
            print(" ----- (Testing) Input shape: {}   ---> Output shape: {}".
                  format(inputFullyCNShape_Test_Old, inputFullyCNShape_Test))
            print("--" * 35)

        ######### -------------- Do Classification layer  ----------------- ##################

        # Define kernel shape for classification layer
        featMaps_LastLayer = self.cnnLayers[-1]
        filterShape_ClassificationLayer = [
            self.n_classes, featMaps_LastLayer, 1, 1, 1
        ]

        # Define inputs and shapes for the classification layer
        inputImageClassificationLayer_Train = inputToFullyCN_Train
        inputImageClassificationLayer_Test = inputToFullyCN_Test

        inputImageClassificationLayerShape_Train = inputFullyCNShape_Train
        inputImageClassificationLayerShape_Test = inputFullyCNShape_Test

        print("--" * 35)

        print(" ----- (Classification layer) kernel shape {}".format(
            filterShape_ClassificationLayer))
        classification_layer_Index = l_i

        weights = []
        applyBatchNorm = True
        epochsToApplyBatchNorm = 60
        maxPoolingParameters = []
        dropoutRate = self.dropout_Rates[len(self.dropout_Rates) - 1]
        softmaxTemperature = 1.0

        myLiviaNet_ClassificationLayer = LiviaSoftmax.LiviaSoftmax(
            rng,
            classification_layer_Index,
            inputImageClassificationLayer_Train,
            inputImageClassificationLayer_Test,
            inputImageClassificationLayerShape_Train,
            inputImageClassificationLayerShape_Test,
            filterShape_ClassificationLayer,
            self.applyBatchNorm,
            self.numberEpochToApplyBatchNorm,
            maxPoolingParameters,
            self.weight_Initialization_FCN,
            weights,
            0,  #self.activationType,
            dropoutRate,
            softmaxTemperature)

        self.networkLayers.append(myLiviaNet_ClassificationLayer)
        self.lastLayer = myLiviaNet_ClassificationLayer

        print(
            " ----- (Training) Input shape: {}  ---> Output shape: {}  ||  kernel shape {}"
            .format(inputImageClassificationLayerShape_Train,
                    myLiviaNet_ClassificationLayer.outputShapeTrain,
                    filterShape_ClassificationLayer))
        print(
            " ----- (Testing) Input shape:  {}  ---> Output shape: {}".format(
                inputImageClassificationLayerShape_Test,
                myLiviaNet_ClassificationLayer.outputShapeTest))