def update_operation_act_4(i):
     u = solutions_optim_relea_2[i]
     S, env, w, r = syst_sim(N, I_act + u, E_act, d_act, S0, Smax, env_min)
     fig_4b.title = 'Supply deficit (max(0,d-Qreg_rel)) - Total = ' + str(
         (np.sum((np.maximum(d_act - r, [0] * N)))).astype('int')) + ' ML'
     fig_4d.title = 'Natural + pumped inflows - Total pumped vol = ' + str(
         (np.sum(np.array(u))).astype('int')) + ' ML'
     return S, u, r, i
 def update_operation(i):
     S, env, w, r = syst_sim(N, I_for + solutions_optim_relea[i], E_for,
                             d_for, S0, Smax, env_min)
     fig_wd.title = 'Supply deficit (max(0,d-Qreg_rel)) - Average deficit = ' + str(
         (sd_mean[i]).astype('int')) + ' ± ' + str(
             (sd_std[i]).astype('int')) + ' ML'
     fig_in.title = 'Natural + pumped inflows - Total pumped vol = {:.0f} ML'.format(
         results2_optim_relea[i] / c)
     return S, solutions_optim_relea[i], r, results1_optim_relea[
         i], results2_optim_relea[i], i
예제 #3
0
def Interactive_Pareto_front(N,I_for,E_for,d_for,S0,Smax,Smin,env_min,c,solutions_optim_relea,results1_optim_relea,results2_optim_relea):
    
    members_num = np.shape(I_for)[0]
    
    population_size = np.shape(solutions_optim_relea)[0]
    sdpen = np.zeros([members_num,population_size])
    sdpen_mean = np.zeros(population_size)
    sdpen_std = np.zeros(population_size)
    sd = np.zeros([members_num,population_size])
    sd_mean = np.zeros(population_size)
    sd_std = np.zeros(population_size)
    
    for i in range(population_size):
        S_opt,env_opt,w_opt,r_opt = syst_sim(N,I_for+solutions_optim_relea[i],E_for,d_for,S0,Smax,env_min)
        sdpen[:,i] = np.sum(np.maximum(d_for-r_opt,np.zeros(np.shape(d_for)))**2,axis = 1)
        sdpen_mean[i] = np.mean(sdpen[:,i])
        sdpen_std[i] = np.std(sdpen[:,i])
        sd[:,i] = np.sum(np.maximum(d_for-r_opt,np.zeros(np.shape(d_for))),axis = 1)
        sd_mean[i] = np.mean(sd[:,i])
        sd_std[i] = np.std(sd[:,i])
    
    # Interactive Pareto front
    def update_operation(i):
        S,env,w,r    = syst_sim(N,I_for+solutions_optim_relea[i],E_for,d_for,S0,Smax,env_min)
        fig_wd.title = 'Total supply deficit = '+str((sd_mean[i]).astype('int'))+' ± '+str((sd_std[i]).astype('int'))+' ML'
        fig_in.title = 'Natural + pumped inflows - Total pumped vol = {:.0f} ML'.format(results2_optim_relea[i]/c)
        return       S,solutions_optim_relea[i],r,results1_optim_relea[i],results2_optim_relea[i],i
    
    def solution_selected(change):
        if pareto_front.selected == None:
            pareto_front.selected = [0]
        storage.y = update_operation(pareto_front.selected[0])[0]
        deficit.y = np.maximum(d_for-update_operation(pareto_front.selected[0])[2],np.zeros(np.shape(d_for)))
        pump_inflows.y = update_operation(pareto_front.selected[0])[1]
        tot_inflows.y = update_operation(pareto_front.selected[0])[1] + I_for
        pareto_front_ensemble.x = np.reshape([results2_optim_relea for i in range(0, members_num)],(members_num,population_size))[:,pareto_front.selected[0]]
        pareto_front_ensemble.y = sdpen[:,pareto_front.selected[0]]
        pareto_front_ensemble.unselected_style={'opacity': 0.1}
        pareto_front_ensemble.selected_style={'opacity': 0.1}
        pareto_front_ensemble.opacity = [0.1]*members_num
        
    x_sc_pf = LinearScale()
    y_sc_pf = LinearScale(min = 0,max = 4000)
    
    x_ax_pf = Axis(label='Total Pumping Cost [£]', scale=x_sc_pf)
    y_ax_pf = Axis(label='Total Squared Deficit [ML^2]', scale=y_sc_pf, orientation='vertical')
    
    pareto_front = plt.scatter(results2_optim_relea[:],results1_optim_relea[:],scales={'x': x_sc_pf, 'y': y_sc_pf},colors=['deepskyblue'], interactions={'hover':'tooltip','click': 'select'})
    pareto_front.unselected_style={'opacity': 0.8}
    pareto_front.selected_style={'fill': 'red', 'stroke': 'yellow', 'width': '1125px', 'height': '125px'}
    
    if pareto_front.selected == []:
        pareto_front.selected = [0]
        
    pareto_front_ensemble = plt.Scatter(x=np.reshape([results2_optim_relea for i in range(0, members_num)],(members_num,population_size))[:,pareto_front.selected[0]],
                                        y=sdpen[:,pareto_front.selected[0]],scales={'x': x_sc_pf, 'y': y_sc_pf},
                                        colors=['red'], 
                                        interactions={'hover':'tooltip','click': 'select'})
    pareto_front_ensemble.unselected_style={'opacity': 0.1}
    pareto_front_ensemble.selected_style={'opacity': 0.1}
    pareto_front_ensemble.opacity = [0.1]*members_num
        
    fig_pf = plt.Figure(marks=[pareto_front,pareto_front_ensemble],title = 'Pareto front', axes=[x_ax_pf, y_ax_pf],layout={'width': '500px', 'height': '500px'}, 
                        animation_duration=500)
    
    pareto_front.observe(solution_selected,'selected')    
    
    S,env,w,r    = syst_sim(N,I_for+solutions_optim_relea[pareto_front.selected[0]],E_for,d_for,S0,Smax,env_min)
    
    x_sc_in = OrdinalScale(min=1,max=N)
    y_sc_in = LinearScale(min=0,max=100)
    x_ax_in = Axis(label='week', scale=x_sc_in)
    y_ax_in = Axis(label='ML/week', scale=y_sc_in, orientation='vertical')
    x_sc_st = LinearScale(min=0,max=N)
    y_sc_st = LinearScale(min=0,max=160)
    x_ax_st = Axis(label='week', scale=x_sc_st)#,tick_values=[0.5,1.5,2.5,3.5])
    y_ax_st = Axis(label='ML', scale=y_sc_st, orientation='vertical')
    x_sc_wd = LinearScale(min=0.5,max=N+0.5)
    y_sc_wd = LinearScale(min=0,max=100);
    x_ax_wd = Axis(label='week', scale=x_sc_wd,tick_values=[1,2,3,4,5,6,7,8])
    y_ax_wd = Axis(label='ML/week', scale=y_sc_wd, orientation='vertical')
   
    pump_inflows = plt.Lines(x=np.arange(1,N+1),
                             y=solutions_optim_relea[pareto_front.selected[0]],
                             scales={'x': x_sc_in, 'y': y_sc_in},
                             colors=['orange'],
                             opacities = [1],
                             stroke_width = 1,
                             marker = 'circle',
                             marker_size = 10,
                             labels = ['pump (Qreg_inf)'], 
                             fill = 'bottom',
                             fill_opacities = [1],
                             fill_colors = ['orange']*members_num*N)
    tot_inflows = plt.Lines(x = np.arange(1,N+1), 
                            y = solutions_optim_relea[pareto_front.selected[0]]+I_for,
                            scales={'x': x_sc_wd, 'y': y_sc_wd},
                            colors=['blue'],
                            opacities = [1]*members_num,
                            stroke_width = 0.5,
                            marker = 'circle',
                            marker_size = 10,
                            labels = ['nat (I) + pump (Qreg_inf)'],
                            fill = 'bottom',
                            fill_opacities = [1/members_num]*members_num*N,
                            fill_colors = ['blue']*members_num*N)
    fig_in   = plt.Figure(marks = [tot_inflows,pump_inflows],axes=[x_ax_in, y_ax_in],layout={'max_width': '480px', 'max_height': '250px'},
                        scales={'x': x_sc_in, 'y': y_sc_in}, animation_duration=1000,legend_location = 'bottom-right')
    
    storage           = plt.plot(x=np.arange(0,N+1),y=S,scales={'x': x_sc_st, 'y': y_sc_st},
                                  colors=['blue'], stroke_width = 0.1,
                                  fill = 'bottom', fill_opacities = [0.1]*members_num)
    max_storage       = plt.plot(x=np.arange(0,N+1),
                                 y=[Smax]*(N+1),
                                 colors=['red'],
                                 scales={'x': x_sc_st, 'y': y_sc_st})
    max_storage_label = plt.label(text = ['Max storage'], 
                                  x=[0],
                                  y=[Smax+10],
                                  colors=['red'])
    fig_st            = plt.Figure(marks = [storage,max_storage,max_storage_label], 
                                   title = 'Reservoir storage volume', 
                                   axes=[x_ax_st, y_ax_st],
                                   layout={'width': '1000px', 'height': '350px'}, 
                                   animation_duration=1000,
                                   scales={'x': x_sc_st, 'y': y_sc_st})

    deficit = plt.Lines(x = np.arange(1,N+1), 
                        y = np.maximum(d_for-r,np.zeros(np.shape(r))),
                        scales={'x': x_sc_wd, 'y': y_sc_wd},
                        colors=['red'],
                        stroke_width = 1,
                        opacities = [1]*members_num,
                        marker = 'circle',
                        marker_size = 10,
                        labels = ['max(0,d-Qreg_rel)'],
                        fill = 'bottom',
                        fill_opacities = [1/members_num]*members_num,
                        fill_colors = ['red']*members_num)

    fig_wd = plt.Figure(marks = [deficit],axes=[x_ax_wd, y_ax_wd],
                        layout={'max_width': '480px', 'max_height': '250px'},
                        animation_duration=1000,
                        legend_location = 'bottom-right')
    
    storage.y  = update_operation(pareto_front.selected[0])[0]
    deficit.y  = np.maximum(d_for-update_operation(pareto_front.selected[0])[2],np.zeros(np.shape(d_for)))
    pump_inflows.y = update_operation(pareto_front.selected[0])[1]
    tot_inflows.y = update_operation(pareto_front.selected[0])[1] + I_for

    
    storage.observe(solution_selected, ['x', 'y'])
    deficit.observe(solution_selected, ['x', 'y'])
    pump_inflows.observe(solution_selected, ['x', 'y'])
    tot_inflows.observe(solution_selected, ['x', 'y'])
    
    return fig_pf,fig_wd,fig_st,fig_in,pareto_front
예제 #4
0
 def update_operation_2(i):
     u            = solutions_optim_relea_2[i]
     S,env,w,r    = syst_sim(N,I_sel+u,E,d_sel,S0,Smax,env_min)
     fig_2b.title = 'Total supply deficit = '+str((np.sum((np.maximum(d_sel-r,[0]*N)))).astype('int'))+' ML'
     fig_2d.title = 'Natural + pumped inflows - Total pumped vol = '+str((np.sum(np.array(u))).astype('int'))+' ML'
     return       S,u,r,i
예제 #5
0
def Interactive_Pareto_front_act(N,I_act,E_act,d_act,S0,Smax,Smin,env_min,c,solutions_optim_relea_2,results1_optim_relea_2,results2_optim_relea_2,sel_policy):
    
    population_size = np.shape(solutions_optim_relea_2)[0]
    sdpen_act_4 = np.zeros(population_size); pcost_act_4 = np.zeros(population_size)
    
    for i in range(population_size):
    
        pinfl_policy_4 = np.array(solutions_optim_relea_2[i])
    
        S_act_4,env_act_4,w_act_4,r_act_4    = syst_sim(N,I_act+pinfl_policy_4,E_act,d_act,S0,Smax,env_min)
        sdpen_act_4[i]       = (np.sum((np.maximum(d_act-r_act_4,[0]*N))**2)).astype('int')
        pcost_act_4[i]       = (np.sum(np.array(pinfl_policy_4)*c)).astype('int')    
        
    def update_operation_act_4(i):
        u            = solutions_optim_relea_2[i]
        S,env,w,r    = syst_sim(N,I_act+u,E_act,d_act,S0,Smax,env_min)
        fig_4b.title = 'Total supply deficit = '+str((np.sum((np.maximum(d_act-r,[0]*N)))).astype('int'))+' ML'
        fig_4d.title = 'Natural + pumped inflows - Total pumped vol = '+str((np.sum(np.array(u))).astype('int'))+' ML'
        return       S,u,r,i
    
    def solution_selected_act_4(change):
        if pareto_front_act_4.selected  == None:
            pareto_front_act_4.selected = [0] 
        deficit_4.y = np.maximum(d_act-update_operation_act_4(pareto_front_act_4.selected[0])[2], [0]*N)
        storage_4.y  = update_operation_act_4(pareto_front_act_4.selected[0])[0]
        pump_inflows_4.y = [update_operation_act_4(pareto_front_act_4.selected[0])[1]]
        tot_inflows_4.y = [update_operation_act_4(pareto_front_act_4.selected[0])[1]+I_act[0]]
        
    def on_hover_4pf(self, target):
        hover_elem_id = list(target.values())[1]['index']
        
    def on_element_click_4pf(self, target):
        click_elem_id = list(target.values())[1]['index']
        colors = ['deepskyblue']*population_size
        colors[click_elem_id] = 'red'
        pareto_front_4.colors = colors
    

    x_sc_2pf = LinearScale()
    y_sc_2pf = LinearScale()
    x_ax_2pf = Axis(label='Total Pumping Cost [£]', 
                    scale=x_sc_2pf)
    y_ax_2pf = Axis(label='Total Squared Deficit [ML^2]', 
                    scale=y_sc_2pf, 
                    orientation='vertical')
    
    pareto_front_4                  = plt.scatter(results2_optim_relea_2[:],
                                                  results1_optim_relea_2[:],
                                                  scales={'x': x_sc_2pf, 'y': y_sc_2pf},
                                                  colors=['deepskyblue'], 
                                                  opacity = [0.11]*population_size,
                                                  interactions={'hover':'tooltip'})
    pareto_front_4.tooltip          = None
    pareto_front_act_4                  = plt.scatter(pcost_act_4[:],sdpen_act_4[:],scales={'x': x_sc_2pf, 'y': y_sc_2pf},
                                                colors=['green'], interactions={'hover':'tooltip'})

    pareto_front_act_4.unselected_style = {'opacity': 0}
    pareto_front_act_4.selected_style   = {'fill': 'black', 'stroke': 'black', 'width': '1125px', 'height': '125px'}
    pareto_front_4.selected_style   = {'fill': 'red', 'stroke': 'red', 'width': '1125px', 'height': '125px'}
    pareto_front_act_4.tooltip          = None

    fig_4pf                         = plt.Figure(marks = [pareto_front_4,pareto_front_act_4 ],title = 'Pareto front', axes=[x_ax_2pf, y_ax_2pf],
                                               layout={'width': '500px', 'height': '500px'}, animation_duration=1000)
    
    if pareto_front_act_4.selected      == []:
        pareto_front_4.selected     = [sel_policy]
        pareto_front_act_4.selected     = [sel_policy]
    pareto_front_act_4.observe(solution_selected_act_4,'selected')
    pareto_front_act_4.on_hover(on_hover_4pf)
    pareto_front_4.on_hover(on_hover_4pf)
    
    x_sc_2b     = OrdinalScale(min=1,
                               max=N)
    y_sc_2b     = LinearScale(min=0,
                              max=100)
    x_ax_2b     = Axis(label='week', 
                       scale=x_sc_2b)
    y_ax_2b     = Axis(label='ML/week', 
                       scale=y_sc_2b, 
                       orientation='vertical')
    deficit_4   = plt.Lines(x=np.arange(1,N+1),
                            y=np.maximum(d_act-r_act_4,[0]*N),
                            colors=['red'],
                            opacities = [1],
                            stroke_width = 0.5, 
                            marker = 'circle',
                            marker_size = 15,
                            labels = ['max(0,d-Qreg_rel)'],
                            fill = 'bottom',
                            fill_opacities = [0.5],
                            fill_colors = ['red'],
                            display_legend = False,
                            scales={'x': x_sc_2b, 'y': y_sc_2b})  

    fig_4b      = plt.Figure(marks = [deficit_4],
                             axes=[x_ax_2b, y_ax_2b],
                             layout={'width': '480px', 'height': '250px'},
                             scales={'x': x_sc_2b, 'y': y_sc_2b}, 
                             animation_duration=1000,
                             legend_location = 'bottom-right', 
                             legend_style = {'fill': 'white', 'opacity': 0.5})
    
    x_sc_2c             = LinearScale(min=0,
                                      max=N)
    y_sc_2c             = LinearScale(min=0,
                                      max=160)
    x_ax_2c             = Axis(label='week', 
                               scale=x_sc_2c)
    y_ax_2c             = Axis(label='ML', 
                               scale=y_sc_2c, 
                               orientation='vertical')  
    max_storage_2       = plt.plot(x=np.arange(0,N+1),
                                   y=[Smax]*(N+1),
                                   colors=['red'],
                                   scales={'x': x_sc_2c, 'y': y_sc_2c})
    max_storage_label_2 = plt.label(text = ['Max storage'],
                                    x=[0],
                                    y=[Smax+10],
                                    colors=['red'])
    storage_4           = plt.Lines(x=np.arange(0,N+1),
                                    y=S_act_4,
                                    colors=['blue'],
                                    scales={'x': x_sc_2c, 'y': y_sc_2c},
                                    fill = 'bottom',fill_opacities = [0.8],
                                    fill_colors = ['blue'])
    fig_4c              = plt.Figure(marks = [storage_4,max_storage_2,max_storage_label_2],
                                     title = 'Reservoir storage (s)',
                                     axes=[x_ax_2c, y_ax_2c],
                                     layout={'width': '1000px', 'height': '350px'}, 
                                     animation_duration=1000,
                                     scales={'x': x_sc_2c, 'y': y_sc_2c})

    x_sc_2d = OrdinalScale(min=1,
                           max=N)
    y_sc_2d = LinearScale(min=0,
                          max=100)
    x_ax_2d = Axis(label='week', 
                   scale=x_sc_2d)
    y_ax_2d = Axis(label='ML/week', 
                   scale=y_sc_2d, 
                   orientation='vertical')    

    pump_inflows_4  = plt.Lines(x=np.arange(1,N+1),
                                y=[pinfl_policy_4],
                                colors=['orange'],
                                opacities = [1], 
                                stroke_width = 0.5, 
                                marker = 'circle',
                                marker_size = 15,
                                fill = 'bottom',
                                fill_opacities = [1],
                                fill_colors = ['orange'],
                                labels = ['pump (Qreg_inf)'], 
                                display_legend = True,
                                scales={'x': x_sc_2d, 'y': y_sc_2d})
    tot_inflows_4  = plt.Lines(x=np.arange(1,N+1),
                                y=[pinfl_policy_4+I_act[0]],
                                colors=['blue'],
                                opacities = [1], 
                                stroke_width = 1, 
                                marker = 'circle',
                                marker_size = 15,
                                fill = 'bottom',
                                fill_opacities = [0.5],
                                fill_colors = ['blue'],
                                labels = ['nat (I) + pump (Qreg_inf)'], 
                                display_legend = True,
                                scales={'x': x_sc_2d, 'y': y_sc_2d})
    
    fig_4d     = plt.Figure(marks = [tot_inflows_4,pump_inflows_4],
                            title = 'Natural + pumped inflows', 
                            axes=[x_ax_2d, y_ax_2d],
                            layout={'width': '480px', 'height': '250px'},
                            scales={'x': x_sc_2d, 'y': y_sc_2d}, 
                            animation_duration=1000,
                            legend_location = 'top', 
                            legend_style = {'fill': 'white', 'opacity': 0.5})
    
    deficit_4.y = np.maximum(d_act-update_operation_act_4(sel_policy)[2],[0]*N)
    storage_4.y  = update_operation_act_4(sel_policy)[0]
    pump_inflows_4.y = [update_operation_act_4(sel_policy)[1]]
    tot_inflows_4.y = [update_operation_act_4(sel_policy)[1]+I_act[0]]
    
    deficit_4.observe(solution_selected_act_4, ['x', 'y'])
    storage_4.observe(solution_selected_act_4, ['x', 'y'])
    pump_inflows_4.observe(solution_selected_act_4, ['x', 'y'])
    tot_inflows_4.observe(solution_selected_act_4, ['x', 'y'])
    
    return fig_4b,fig_4c,fig_4d,fig_4pf
예제 #6
0
def Interactive_Pareto_front_det(N,I_sel,E,d_sel,S0,Smax,Smin,env_min,c,solutions_optim_relea_2,results1_optim_relea_2,results2_optim_relea_2):
    
    def update_operation_2(i):
        u            = solutions_optim_relea_2[i]
        S,env,w,r    = syst_sim(N,I_sel+u,E,d_sel,S0,Smax,env_min)
        fig_2b.title = 'Total supply deficit = '+str((np.sum((np.maximum(d_sel-r,[0]*N)))).astype('int'))+' ML'
        fig_2d.title = 'Natural + pumped inflows - Total pumped vol = '+str((np.sum(np.array(u))).astype('int'))+' ML'
        return       S,u,r,i
    
    def solution_selected_2(change):
        if pareto_front_2.selected  == None:
            pareto_front_2.selected = [0]
        deficit_2.y = np.maximum(d_sel-update_operation_2(pareto_front_2.selected[0])[2],[0]*N)
        storage_2.y  = update_operation_2(pareto_front_2.selected[0])[0]
        pump_inflows_2.y = [update_operation_2(pareto_front_2.selected[0])[1]]
        tot_inflows_2.y = [update_operation_2(pareto_front_2.selected[0])[1]+I_sel[0]]
        
    x_sc_2pf = LinearScale();y_sc_2pf = LinearScale()
    x_ax_2pf = Axis(label='Total Pumping Cost [£]', scale=x_sc_2pf)
    y_ax_2pf = Axis(label='Total Squared Deficit [ML^2]', scale=y_sc_2pf, orientation='vertical')
    pareto_front_2                  = plt.scatter(results2_optim_relea_2[:],results1_optim_relea_2[:],scales={'x': x_sc_2pf, 'y': y_sc_2pf},
                                                colors=['deepskyblue'], interactions={'hover':'tooltip','click': 'select'})
    pareto_front_2.unselected_style = {'opacity': 0.4}
    pareto_front_2.selected_style   = {'fill': 'red', 'stroke': 'yellow', 'width': '1125px', 'height': '125px'}
    def_tt                          = Tooltip(fields=['x', 'y','index'],labels=['Pumping cost','Squared deficit', 'sol index'], 
                                            formats=['.1f', '.1f', '.0f'])
    pareto_front_2.tooltip          = def_tt
    fig_2pf                         = plt.Figure(marks = [pareto_front_2],title = 'Pareto front', axes=[x_ax_2pf, y_ax_2pf],
                                               layout={'width': '500px', 'height': '500px'}, animation_duration=1000)
    if pareto_front_2.selected      == []:
        pareto_front_2.selected     = [0]
    pareto_front_2.observe(solution_selected_2,'selected')    
    
    S,env,w,r = syst_sim(N,I_sel+solutions_optim_relea_2[pareto_front_2.selected[0]],E,d_sel,S0,Smax,env_min)
    
    x_sc_2b    = OrdinalScale(min=1,max=N);y_sc_2b = LinearScale(min=0,max=100)
    x_ax_2b = Axis(label='week', scale=x_sc_2b)
    y_ax_2b = Axis(label='ML/week', scale=y_sc_2b, orientation='vertical')

    deficit_2 = plt.Lines(x=np.arange(1,N+1),
                          y=np.maximum(d_sel-r,[0]*N),
                          colors=['red'],
                          opacities = [1],
                          stroke_width = 0.5, 
                          marker = 'circle',
                          marker_size = 15,
                          labels = ['max(0,d-Qreg_rel)'],
                          fill = 'bottom',
                          fill_opacities = [0.5],
                          fill_colors = ['red'],
                          display_legend = False,
                          scales={'x': x_sc_2b, 'y': y_sc_2b})    
    fig_2b     = plt.Figure(marks = [deficit_2],
                            axes=[x_ax_2b, y_ax_2b],
                            layout={'width': '480px', 'height': '250px'},
                            scales={'x': x_sc_2b, 'y': y_sc_2b}, 
                            animation_duration=1000,
                            legend_location = 'bottom-right', 
                            legend_style = {'fill': 'white', 'opacity': 0.5})
    
    x_sc_2c             = LinearScale(min=0,max=N)
    y_sc_2c             = LinearScale(min=0,max=160)
    x_ax_2c             = Axis(label='week', 
                               scale=x_sc_2c)
    y_ax_2c             = Axis(label='ML', 
                               scale=y_sc_2c, 
                               orientation='vertical')
    storage_2           = plt.Lines(x=np.arange(0,N+1),
                                y=S,colors=['blue'],
                                scales={'x': x_sc_2c, 'y': y_sc_2c},
                                fill = 'bottom',
                                fill_opacities = [0.8],
                                fill_colors = ['blue'])
    max_storage_2       = plt.plot(x=np.arange(0,N+1),
                                   y=[Smax]*(N+1),
                                   colors=['red'],
                                   scales={'x': x_sc_2c, 'y': y_sc_2c})
    max_storage_label_2 = plt.label(text = ['Max storage'], 
                                    x=[0],
                                    y=[Smax+10],
                                    colors=['red'])
    fig_2c              = plt.Figure(marks = [storage_2,max_storage_2,max_storage_label_2],
                                     title = 'Reservoir storage (s)',
                                     axes=[x_ax_2c, y_ax_2c],
                                     layout={'width': '1000px', 'height': '350px'}, 
                                     animation_duration=1000,
                                     scales={'x': x_sc_2c, 'y': y_sc_2c})
    
    x_sc_2d    = OrdinalScale(min=1,
                              max=N)
    y_sc_2d = LinearScale(min=0,
                          max=100)
    x_ax_2d = Axis(label='week', 
                   scale=x_sc_2d)
    y_ax_2d = Axis(label='ML/week', 
                   scale=y_sc_2d, 
                   orientation='vertical')
    # Stacked bars
    pump_inflows_2  = plt.Lines(x=np.arange(1,N+1),
                                y=(solutions_optim_relea_2[pareto_front_2.selected[0]]),
                                colors=['orange'],
                                opacities = [1], 
                                stroke_width = 0.5, 
                                marker = 'circle',
                                marker_size = 15,
                                fill = 'bottom',
                                fill_opacities = [1],
                                fill_colors = ['orange'],
                                labels = ['pump (Qreg_inf)'], 
                                display_legend = True,
                                scales={'x': x_sc_2d, 'y': y_sc_2d})
    tot_inflows_2  = plt.Lines(x=np.arange(1,N+1),
                                y=(solutions_optim_relea_2[pareto_front_2.selected[0]]+I_sel[0]),
                                colors=['blue'],
                                opacities = [1], 
                                stroke_width = 1, 
                                marker = 'circle',
                                marker_size = 15,
                                fill = 'bottom',
                                fill_opacities = [0.5],
                                fill_colors = ['blue'],
                                labels = ['nat (I) + pump (Qreg_inf)'], 
                                display_legend = True,
                                scales={'x': x_sc_2d, 'y': y_sc_2d})
    fig_2d     = plt.Figure(marks = [tot_inflows_2,pump_inflows_2],
                            title = 'Natural + pumped inflows', 
                            axes=[x_ax_2d, y_ax_2d],
                            layout={'width': '480px', 'height': '250px'}, 
                            scales={'x': x_sc_2d, 'y': y_sc_2d}, 
                            animation_duration=1000,
                            legend_location = 'top', 
                            legend_style = {'fill': 'white', 'opacity': 0.5})
    

    deficit_2.y = np.maximum(d_sel-update_operation_2(pareto_front_2.selected[0])[2],[0]*N)
    storage_2.y  = update_operation_2(pareto_front_2.selected[0])[0]
    pump_inflows_2.y = [update_operation_2(pareto_front_2.selected[0])[1]]
    tot_inflows_2.y = [update_operation_2(pareto_front_2.selected[0])[1]+I_sel[0]]
    
    deficit_2.observe(solution_selected_2, ['x', 'y'])
    storage_2.observe(solution_selected_2, ['x', 'y'])
    pump_inflows_2.observe(solution_selected_2, ['x', 'y'])
    tot_inflows_2.observe(solution_selected_2, ['x', 'y'])
    
    return fig_2pf,fig_2b,fig_2c,fig_2d,pareto_front_2