def predict(self, uid, iid, distribution = True): """ predict rating matrix entry given userID and itemID, distribution == True when probability distribution is output """ self.initialize(uid, iid, predict = True) # set avg embeddings for cold-start entries m = np.sum(np.multiply(self.u[uid], self.v[iid]), axis=1) return softmaxOutput(m, distribution=distribution)
def predict(self, uid, iid, distribution = True): self.initialize(uid, iid, predict = True) m = TDreconstruct(self.c, self.u[uid], self.v[iid], self.r) return softmaxOutput(m, distribution=distribution)
def predict(self, uid, iid, distribution=True): self.initialize(uid, iid, predict=True) L1 = self._L1(uid, iid) outL1 = self._outL1(L1) L2 = denseLayer(outL1, self.W2, self.B2) return softmaxOutput(L2, distribution=distribution)
def predict(self, uid, iid, distribution = True): self.initialize(uid, iid, predict = True) L1 = self._L1(uid, iid) return softmaxOutput(L1, distribution = distribution)
def predict(self, uid, iid, distribution=True): self.initialize(uid, iid, predict=True) L1 = self._L1(uid, iid) outL1 = self._outL1(L1) m = np.sum(np.multiply(self.W2, outL1), axis=1) return softmaxOutput(m, distribution=distribution)