def create_test_model(input_workspaces, function_name, parameters, output_workspace_names=None, logs=None, global_parameters=None): """ Create a list of fits with time series logs on the workspaces :param input_workspaces: See create_test_fits :param function_name: See create_test_fits :param parameters: See create_test_fits :param logs: A list of (name, (values...), (name, (values...))) :param global_parameters: An optional list of tied parameters :return: A list of Fits with workspaces/logs attached """ fits = create_test_fits(input_workspaces, function_name, parameters, output_workspace_names, global_parameters) logs = logs if logs is not None else [] for fit, workspace_name in zip(fits, input_workspaces): add_logs(workspace_name, logs) fitting_context = TFAsymmetryFittingContext() for fit in fits: fitting_context.add_fit(fit) return fitting_context, ResultsTabModel(fitting_context, ResultsContext())
def setup_context(freq=False): loaded_data = MuonLoadData() loaded_data.get_main_field_direction = mock.MagicMock( return_value='transverse') data_context = MuonDataContext(load_data=loaded_data) gui_context = MuonGuiContext() group_context = MuonGroupPairContext( data_context.check_group_contains_valid_detectors) corrections_context = CorrectionsContext(loaded_data) phase_table_context = PhaseTableContext() freq_context = FrequencyContext() plot_panes_context = PlotPanesContext() if freq: return FrequencyDomainAnalysisContext( muon_data_context=data_context, muon_group_context=group_context, muon_gui_context=gui_context, muon_phase_context=phase_table_context, corrections_context=corrections_context, fitting_context=BasicFittingContext( allow_double_pulse_fitting=True), frequency_context=freq_context, plot_panes_context=plot_panes_context) else: return DataAnalysisContext(muon_data_context=data_context, muon_group_context=group_context, muon_gui_context=gui_context, corrections_context=corrections_context, muon_phase_context=phase_table_context, fitting_context=TFAsymmetryFittingContext( allow_double_pulse_fitting=True), results_context=ResultsContext(), model_fitting_context=ModelFittingContext(), plot_panes_context=plot_panes_context)
def setup_context_for_tests(parent_object): parent_object.loaded_data = MuonLoadData() parent_object.loaded_data.get_main_field_direction = mock.MagicMock( return_value='transverse') parent_object.data_context = MuonDataContext( load_data=parent_object.loaded_data) parent_object.gui_context = MuonGuiContext() parent_object.group_context = MuonGroupPairContext( parent_object.data_context.check_group_contains_valid_detectors) parent_object.corrections_context = CorrectionsContext( parent_object.loaded_data) parent_object.phase_table_context = PhaseTableContext() parent_object.fitting_context = TFAsymmetryFittingContext( allow_double_pulse_fitting=True) parent_object.results_context = ResultsContext() parent_object.plot_panes_context = PlotPanesContext() parent_object.model_fitting_context = ModelFittingContext() parent_object.context = DataAnalysisContext( muon_data_context=parent_object.data_context, muon_group_context=parent_object.group_context, muon_gui_context=parent_object.gui_context, muon_phase_context=parent_object.phase_table_context, corrections_context=parent_object.corrections_context, fitting_context=parent_object.fitting_context, results_context=parent_object.results_context, model_fitting_context=parent_object.model_fitting_context, plot_panes_context=parent_object.plot_panes_context)
def test_create_results_table_raises_error_if_number_params_different( self): parameters = OrderedDict([('Height', (100, 0.1)), ('Cost function value', (1.5, 0))]) fits_func1 = create_test_fits(('ws1',), 'func1', parameters) parameters = OrderedDict([('Height', (100, 0.1)), ('A0', (1, 0.001)), ('Cost function value', (1.5, 0))]) fits_func2 = create_test_fits(('ws2',), 'func2', parameters) fitting_context = TFAsymmetryFittingContext() fitting_context.fit_list = fits_func1 + fits_func2 model = ResultsTabModel(fitting_context, ResultsContext()) selected_results = [('ws1', 0), ('ws2', 1)] self.assertRaises(IndexError, model.create_results_table, [], selected_results)
def test_that_when_new_fit_is_performed_function_name_is_set_to_lastest_fit_name(self): parameters = OrderedDict([('Height', (100, 0.1)), ('Cost function value', (1.5, 0))]) fits_func1 = create_test_fits(('ws1',), 'func1', parameters) parameters = OrderedDict([('Height', (100, 0.1)), ('A0', (1, 0.001)), ('Cost function value', (1.5, 0))]) fits_func2 = create_test_fits(('ws2',), 'func2', parameters) fitting_context = TFAsymmetryFittingContext() fits = fits_func1 + fits_func2 for fit in fits: fitting_context.add_fit(fit) model = ResultsTabModel(fitting_context, ResultsContext()) model.on_new_fit_performed() self.assertEqual(model.selected_fit_function(), 'func2')
def test_create_results_table_with_mixed_global_non_global_raises_error( self): parameters = OrderedDict([('f0.Height', (100, 0.1)), ('f1.Height', (90, 0.001)), ('Cost function value', (1.5, 0))]) fits_func1 = create_test_fits(('ws1',), 'func1', parameters) fits_globals = create_test_fits(('ws2',), 'func1', parameters, global_parameters=['Height']) fitting_context = TFAsymmetryFittingContext() fitting_context.fit_list = fits_func1 + fits_globals model = ResultsTabModel(fitting_context, ResultsContext()) selected_results = [('ws1', 0), ('ws2', 1)] self.assertRaises(IndexError, model.create_results_table, [], selected_results)
def test_create_results_table_with_logs_missing_from_some_workspaces_raises(self): workspace = WorkspaceFactory.create("Workspace2D", NVectors=3, YLength=5, XLength=5) parameters = OrderedDict([('f0.Height', (100, 0.1))]) logs = [('log1', (1., 2.)), ('log2', (3., 4.)), ('log3', (4., 5.)), ('log4', (5., 6.))] fits_logs1 = create_test_fits(('ws1',), 'func1', parameters, output_workspace_names=[StaticWorkspaceWrapper('test-ws1-ws', workspace)]) add_logs(fits_logs1[0].input_workspaces[0], logs[:2]) fits_logs2 = create_test_fits(('ws2',), 'func1', parameters, output_workspace_names=[StaticWorkspaceWrapper('test-ws2-ws', workspace)]) add_logs(fits_logs2[0].input_workspaces[0], logs[2:]) fitting_context = TFAsymmetryFittingContext() fitting_context.fit_list = fits_logs1 + fits_logs2 model = ResultsTabModel(fitting_context, ResultsContext()) selected_results = [('ws1', 0), ('ws2', 1)] selected_logs = ['log1', 'log3'] self.assertRaises(IndexError, model.create_results_table, selected_logs, selected_results)
def test_model_returns_no_log_selection_if_no_fits_present(self): model = ResultsTabModel(TFAsymmetryFittingContext(), ResultsContext()) self.assertEqual(0, len(model.log_selection({})))
def test_updating_model_selected_fit_function(self): model = ResultsTabModel(TFAsymmetryFittingContext(), ResultsContext()) new_selection = 'func2' model.set_selected_fit_function(new_selection) self.assertEqual(model.selected_fit_function(), new_selection)
def test_default_model_has_no_selected_function_without_fits(self): model = ResultsTabModel(TFAsymmetryFittingContext(), ResultsContext()) self.assertTrue(model.selected_fit_function() is None)
def test_updating_model_results_table_name(self): table_name = 'table_name' model = ResultsTabModel(TFAsymmetryFittingContext(), ResultsContext()) model.set_results_table_name(table_name) self.assertEqual(model.results_table_name(), table_name)
def test_default_model_has_results_table_name(self): model = ResultsTabModel(TFAsymmetryFittingContext(), ResultsContext()) self.assertEqual(model.results_table_name(), DEFAULT_TABLE_NAME)
def test_that_allow_double_pulse_fitting_is_set_to_false_by_default(self): self.assertFalse(self.fitting_context.allow_double_pulse_fitting) self.fitting_context = TFAsymmetryFittingContext(allow_double_pulse_fitting=True) self.assertTrue(self.fitting_context.allow_double_pulse_fitting)
def setUp(self): self.fitting_context = TFAsymmetryFittingContext()
class TFAsymmetryFittingContextTest(unittest.TestCase): def setUp(self): self.fitting_context = TFAsymmetryFittingContext() def test_that_allow_double_pulse_fitting_is_set_to_false_by_default(self): self.assertFalse(self.fitting_context.allow_double_pulse_fitting) self.fitting_context = TFAsymmetryFittingContext(allow_double_pulse_fitting=True) self.assertTrue(self.fitting_context.allow_double_pulse_fitting) def test_that_the_context_has_been_instantiated_with_empty_fit_data(self): self.assertEqual(self.fitting_context.dataset_names, []) self.assertEqual(self.fitting_context.current_dataset_index, None) self.assertEqual(self.fitting_context.start_xs, []) self.assertEqual(self.fitting_context.end_xs, []) self.assertEqual(self.fitting_context.single_fit_functions, []) self.assertEqual(self.fitting_context.dataset_indices_for_undo, []) self.assertEqual(self.fitting_context.single_fit_functions_for_undo, []) self.assertEqual(self.fitting_context.fit_statuses_for_undo, []) self.assertEqual(self.fitting_context.chi_squared_for_undo, []) self.assertEqual(self.fitting_context.fit_statuses, []) self.assertEqual(self.fitting_context.chi_squared, []) self.assertEqual(self.fitting_context.plot_guess, False) self.assertEqual(self.fitting_context.guess_workspace_name, None) self.assertEqual(self.fitting_context.function_name, "") self.assertTrue(self.fitting_context.function_name_auto_update) self.assertEqual(self.fitting_context.minimizer, "") self.assertEqual(self.fitting_context.evaluation_type, "") self.assertTrue(self.fitting_context.fit_to_raw) self.assertEqual(self.fitting_context.simultaneous_fit_function, None) self.assertEqual(self.fitting_context.simultaneous_fit_functions_for_undo, []) self.assertEqual(self.fitting_context.normalisations_for_undo, []) self.assertEqual(self.fitting_context.normalisations_fixed_for_undo, []) self.assertTrue(not self.fitting_context.simultaneous_fitting_mode) self.assertEqual(self.fitting_context.simultaneous_fit_by, "") self.assertEqual(self.fitting_context.simultaneous_fit_by_specifier, "") self.assertEqual(self.fitting_context.global_parameters, []) self.assertTrue(not self.fitting_context.tf_asymmetry_mode) self.assertEqual(self.fitting_context.tf_asymmetry_single_functions, []) self.assertEqual(self.fitting_context.tf_asymmetry_simultaneous_function, None) def test_that_clear_will_clear_the_undo_data_and_active_fits_list(self): self.fitting_context.active_fit_history = [mock.Mock(), mock.Mock()] self.fitting_context.dataset_indices_for_undo = [0, 1] self.fitting_context.single_fit_functions_for_undo = [mock.Mock(), mock.Mock()] self.fitting_context.fit_statuses_for_undo = ["Success", "Fail"] self.fitting_context.chi_squared_for_undo = [2.2, 3.3] self.fitting_context.simultaneous_fit_functions_for_undo = [mock.Mock(), mock.Mock()] self.fitting_context.normalisations_for_undo = [1.0, 2.0] self.fitting_context.normalisations_fixed_for_undo = [True, False] self.assertEqual(len(self.fitting_context.active_fit_history), 2) self.assertEqual(len(self.fitting_context.all_latest_fits()), 2) self.assertEqual(len(self.fitting_context.dataset_indices_for_undo), 2) self.assertEqual(len(self.fitting_context.single_fit_functions_for_undo), 2) self.assertEqual(len(self.fitting_context.fit_statuses_for_undo), 2) self.assertEqual(len(self.fitting_context.chi_squared_for_undo), 2) self.assertEqual(len(self.fitting_context.simultaneous_fit_functions_for_undo), 2) self.assertEqual(len(self.fitting_context.normalisations_for_undo), 2) self.assertEqual(len(self.fitting_context.normalisations_fixed_for_undo), 2) self.fitting_context.clear() self.assertEqual(self.fitting_context.active_fit_history, []) self.assertEqual(self.fitting_context.all_latest_fits(), []) self.assertEqual(self.fitting_context.dataset_indices_for_undo, []) self.assertEqual(self.fitting_context.single_fit_functions_for_undo, []) self.assertEqual(self.fitting_context.fit_statuses_for_undo, []) self.assertEqual(self.fitting_context.chi_squared_for_undo, []) self.assertEqual(self.fitting_context.simultaneous_fit_functions_for_undo, []) self.assertEqual(self.fitting_context.normalisations_for_undo, []) self.assertEqual(self.fitting_context.normalisations_fixed_for_undo, []) def test_that_all_latest_fits_will_return_the_two_most_recent_unique_fits(self): output_ws = WorkspaceFactory.create("Workspace2D", NVectors=3, YLength=5, XLength=5) table_workspace = WorkspaceFactory.createTable() output_ws_wrap1 = StaticWorkspaceWrapper("Output1", output_ws) parameter_ws_wrap1 = StaticWorkspaceWrapper("Parameter1", table_workspace) covariance_ws_wrap1 = StaticWorkspaceWrapper("Covariance1", table_workspace) output_ws_wrap2 = StaticWorkspaceWrapper("Output2", output_ws) parameter_ws_wrap2 = StaticWorkspaceWrapper("Parameter2", table_workspace) covariance_ws_wrap2 = StaticWorkspaceWrapper("Covariance2", table_workspace) fit1 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1], parameter_ws_wrap1, covariance_ws_wrap1) fit2 = FitInformation(["Input2"], "GausOsc", [output_ws_wrap2], parameter_ws_wrap2, covariance_ws_wrap2) fit3 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1], parameter_ws_wrap1, covariance_ws_wrap1) self.fitting_context.tf_asymmetry_mode = True self.fitting_context.simultaneous_fitting_mode = True self.fitting_context.active_fit_history = [fit1, fit2, fit3] self.assertEqual(self.fitting_context.active_fit_history[0], fit1) self.assertEqual(self.fitting_context.active_fit_history[1], fit2) self.assertEqual(self.fitting_context.active_fit_history[2], fit3) self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2) self.assertEqual(self.fitting_context.all_latest_fits()[1], fit3) self.fitting_context.tf_asymmetry_mode = False self.assertEqual(self.fitting_context.active_fit_history, []) self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2) self.assertEqual(self.fitting_context.all_latest_fits()[1], fit3) def test_remove_workspace_by_name_will_remove_a_fit_containing_a_specific_parameter_workspace(self): output_ws = WorkspaceFactory.create("Workspace2D", NVectors=3, YLength=5, XLength=5) table_workspace = WorkspaceFactory.createTable() output_ws_wrap1 = StaticWorkspaceWrapper("Output1", output_ws) parameter_ws_wrap1 = StaticWorkspaceWrapper("Parameter1", table_workspace) covariance_ws_wrap1 = StaticWorkspaceWrapper("Covariance1", table_workspace) output_ws_wrap2 = StaticWorkspaceWrapper("Output2", output_ws) parameter_ws_wrap2 = StaticWorkspaceWrapper("Parameter2", table_workspace) covariance_ws_wrap2 = StaticWorkspaceWrapper("Covariance2", table_workspace) fit1 = FitInformation(["Input1"], "GausOsc", [output_ws_wrap1], parameter_ws_wrap1, covariance_ws_wrap1) fit2 = FitInformation(["Input2"], "GausOsc", [output_ws_wrap2], parameter_ws_wrap2, covariance_ws_wrap2) self.fitting_context.tf_asymmetry_mode = True self.fitting_context.simultaneous_fitting_mode = True self.fitting_context.active_fit_history = [fit1, fit2] self.fitting_context.remove_workspace_by_name("Parameter1") self.assertEqual(self.fitting_context.active_fit_history[0], fit2) self.assertEqual(self.fitting_context.all_latest_fits()[0], fit2)
def __init__(self, parent=None, window_flags=None): super(MuonAnalysisGui, self).__init__(parent) if window_flags: self.setWindowFlags(window_flags) self.setAttribute(QtCore.Qt.WA_DeleteOnClose) self.setFocusPolicy(QtCore.Qt.StrongFocus) self.setObjectName("MuonAnalysis2") self.current_tab = '' try: check_facility() except AttributeError as error: self.warning_popup(error.args[0]) # initialise the data storing classes of the interface self.loaded_data = MuonLoadData() self.data_context = MuonDataContext('Muon Data', self.loaded_data) self.gui_context = MuonGuiContext() self.group_pair_context = MuonGroupPairContext( self.data_context.check_group_contains_valid_detectors) self.corrections_context = CorrectionsContext(self.loaded_data) self.phase_context = PhaseTableContext() self.fitting_context = TFAsymmetryFittingContext(allow_double_pulse_fitting=True) self.results_context = ResultsContext() self.model_fitting_context = ModelFittingContext(allow_double_pulse_fitting=False) self.plot_panes_context = PlotPanesContext() self.context = DataAnalysisContext(muon_data_context=self.data_context, muon_gui_context=self.gui_context, muon_group_context=self.group_pair_context, corrections_context=self.corrections_context, fitting_context=self.fitting_context, results_context=self.results_context, model_fitting_context=self.model_fitting_context, muon_phase_context=self.phase_context, plot_panes_context=self.plot_panes_context) # create the Dockable plot widget self.fitting_tab = FittingTabWidget(self.context, self) self.plot_widget = MuonAnalysisPlotWidget(self.context, parent=self) self.dockable_plot_widget_window = PlottingDockWidget(parent=self, plotting_widget=self.plot_widget.view) self.dockable_plot_widget_window.setMinimumWidth(800) # Add dock widget to main Muon analysis window self.addDockWidget(QtCore.Qt.RightDockWidgetArea, self.dockable_plot_widget_window) # Need this line to stop the bug where the dock window snaps back to its original size after resizing. # 0 argument is arbitrary and has no effect on fit widget size # This is a qt bug reported at (https://bugreports.qt.io/browse/QTBUG-65592) if QT_VERSION >= LooseVersion("5.6"): self.resizeDocks({self.dockable_plot_widget_window}, {1}, QtCore.Qt.Horizontal) self.disable_notifier = GenericObservable() self.disable_observer = GenericObserver(self.disable_notifier.notify_subscribers) self.enable_notifier = GenericObservable() self.enable_observer = GenericObserver(self.enable_notifier.notify_subscribers) # set up other widgets self.load_widget = LoadWidget(self.loaded_data, self.context, self) self.home_tab = HomeTabWidget(self.context, self) self.grouping_tab_widget = GroupingTabWidget(self.context, parent) self.corrections_tab = CorrectionsTabWidget(self.context, self) self.phase_tab = PhaseTabWidget(self.context, self) self.seq_fitting_tab = SeqFittingTabWidget(self.context, self.fitting_tab.fitting_tab_model, self) self.results_tab = ResultsTabWidget(self.context.fitting_context, self.context, self) self.model_fitting_tab = ModelFittingTabWidget(self.context, self) self.setup_tabs() self.help_widget = HelpWidget("Muon Analysis 2") central_widget = QtWidgets.QWidget() vertical_layout = QtWidgets.QVBoxLayout() vertical_layout.addWidget(self.load_widget.load_widget_view) vertical_layout.addWidget(self.tabs) vertical_layout.addWidget(self.help_widget.view) central_widget.setLayout(vertical_layout) self.setCentralWidget(central_widget) self.setWindowTitle(self.context.window_title) self.setup_load_observers() self.setup_gui_variable_observers() self.setup_grouping_changed_observers() self.setup_corrections_changed_observers() self.setup_instrument_changed_notifier() self.setup_group_calculation_enable_notifier() self.setup_group_calculation_disabler_notifier() self.setup_on_load_enabler() self.setup_on_load_disabler() self.setup_phase_quad_changed_notifier() self.setup_phase_table_changed_notifier() self.setup_fitting_notifier() self.setup_counts_calculation_finished_notifier() self.setup_asymmetry_pair_and_diff_calculations_finished_notifier() self.setup_results_notifier() self.context.data_context.message_notifier.add_subscriber( self.grouping_tab_widget.group_tab_presenter.message_observer) self.setup_disable_notifier() self.setup_enable_notifier()