예제 #1
0
 def __init__(self, parents: Tuple[Gaussian], child: Gaussian):
     VMPFactor.__init__(self)
     self._deterministic = True
     self.parents = parents
     self.child = child
     self.message_to_child = Gaussian.uniform(self.child.shape)
     self.message_to_parents = tuple(
         Gaussian.uniform(p.shape) for p in self.parents)
예제 #2
0
 def __init__(self, parent: Gaussian, children: Tuple[Gaussian]):
     VMPFactor.__init__(self)
     self._deterministic = True
     self.parent = parent
     self.children = children
     self._chunks = tuple(c.shape[1] for c in children)
     self.message_to_children = tuple(
         Gaussian.uniform(c.shape) for c in children)
     self.message_to_parent = Gaussian.uniform(self.parent.shape)
예제 #3
0
 def __init__(self, parent: Gaussian, index: torch.Tensor, child: Gaussian):
     VMPFactor.__init__(self)
     self._deterministic = True
     self.parent = parent
     self.index = index
     self.child = child
     self.which = torch.stack(
         [self.index == i for i in range(self.parent.shape[0])])
     self.message_to_child = Gaussian.uniform(self.child.shape)
     self.message_to_parent = Gaussian.uniform(self.child.shape)
     self.message_to_parent_sum = Gaussian.uniform(self.parent.shape)
예제 #4
0
 def __init__(self, parent: Gaussian, child: Gaussian,
              variance: torch.Tensor):
     # TODO: variance as tensor, variance in log scale
     VMPFactor.__init__(self)
     self._deterministic = False
     self._observed = False
     self._prior = False
     self.log_var = nn.Parameter(variance)
     self.parent = parent
     self.child = child
     self.message_to_child = Gaussian.uniform(self.shape)
     self.message_to_parent = Gaussian.uniform(self.shape)
예제 #5
0
 def __init__(self, parent: Gaussian, child: Gaussian):
     VMPFactor.__init__(self)
     self._deterministic = True
     self.parent = parent
     self.child = child
     self.in_dim = self.parent.shape[1]
     self.out_dim = self.child.shape[1]
     dtype = self.parent.precision.dtype
     self.weight = nn.Parameter(
         torch.randn((self.in_dim, self.out_dim), dtype=dtype))
     self.bias = nn.Parameter(torch.randn((self.out_dim, ), dtype=dtype))
     self.message_to_child = Gaussian.uniform(self.child.shape)
     self.message_to_parent_sum = Gaussian.uniform(self.parent.shape)
     self.message_to_parent = Gaussian.uniform(
         (self.parent.shape[0], self.in_dim, self.out_dim))
예제 #6
0
 def __init__(self, parent: Gaussian, child: Bernoulli):
     VMPFactor.__init__(self)
     self._deterministic = False
     self._observed = False
     self.parent = parent
     self.child = child
     self.message_to_child = Bernoulli.uniform(self.shape)
     self.message_to_parent = Gaussian.uniform(self.shape)
예제 #7
0
파일: models.py 프로젝트: fontaine618/NAIVI
    def __init__(self, positions: Gaussian, index: torch.Tensor,
                 X_cts: torch.Tensor, X_bin: torch.Tensor):
        f.VMPFactor.__init__(self)
        self._deterministic = False
        p_cts = X_cts.shape[1]
        p_bin = X_bin.shape[1]
        p = p_cts + p_bin
        n = index.shape[0]
        K = positions.shape[1]

        self._positions = Gaussian.uniform((n, K))
        self._mean = Gaussian.uniform((n, p))
        self._mean_cts = Gaussian.uniform((n, p_cts))
        self._mean_bin = Gaussian.uniform((n, p_bin))

        self._select = f.Select(positions, index, self._positions)
        self._linear = f.Linear(self._positions, self._mean)
        self._split = f.Split(self._mean, (self._mean_cts, self._mean_bin))
        self._gaussian = f.GaussianFactor.observed(self._mean_cts, X_cts,
                                                   torch.zeros(p_cts))
        self._logistic = f.Logistic.observed(self._mean_bin, X_bin)
예제 #8
0
 def __init__(self, parents: Tuple[Gaussian], child: Gaussian):
     VMPFactor.__init__(self)
     self._deterministic = True
     self.parents = parents
     self.child = child
     self._products = Gaussian.uniform(self.parents[0].shape)
     self._product = Product(parents, self._products)
     self._linear = Linear(self._products, child)
     self._linear.weight.data = torch.ones_like(self._linear.weight.data)
     self._linear.weight.requires_grad = False
     self._linear.bias.data = torch.zeros_like(self._linear.bias.data)
     self._linear.bias.requires_grad = False
예제 #9
0
파일: models.py 프로젝트: fontaine618/NAIVI
    def __init__(self, positions: Gaussian, heterogeneity: Gaussian,
                 indices: Tuple[torch.Tensor], links: torch.Tensor):
        f.VMPFactor.__init__(self)
        self._deterministic = False
        n = indices[0].shape[0]
        K = positions.shape[1]

        self._positions = tuple(Gaussian.uniform((n, K)) for _ in range(2))
        self._heterogeneity = tuple(Gaussian.uniform((n, 1)) for _ in range(2))
        self._inner_products = Gaussian.uniform((n, 1))
        self._logits = Gaussian.uniform((n, 1))

        self._select_positions = tuple(
            f.Select(positions, i, p)
            for i, p in zip(indices, self._positions))
        self._select_heterogeneity = tuple(
            f.Select(heterogeneity, i, p)
            for i, p in zip(indices, self._heterogeneity))
        self._inner_product = f.InnerProduct(self._positions,
                                             self._inner_products)
        self._sum = f.Sum((self._inner_products, *self._heterogeneity),
                          self._logits)
        self._logistic = f.Logistic.observed(self._logits, links)
예제 #10
0
self

# -----------------------------------------------------------------------------
# Select
import torch
import numpy as np
from NNVI.vmp.gaussian import Gaussian
from NNVI.vmp.factors import Select

N = 5
n = N * (N - 1) // 2
K = 3

parent = Gaussian.from_array(torch.randn((N, K)), torch.ones((N, K)))
index = torch.randint(0, N, (n, ))
child = Gaussian.uniform((n, K))

self = Select(parent, index, child)

self
self.forward()
self.backward()
self

# -----------------------------------------------------------------------------
# Product
import torch
import numpy as np
from NNVI.vmp.gaussian import Gaussian
from NNVI.vmp.factors import Product