def main(): l1 = NeuronLayer((28, 28), True, False) l2 = NeuronLayer((10, 10)) l3 = NeuronLayer((10,), False, True) network = NeuralNetwork() network.add_layer(l1) network.add_layer(l2) network.add_layer(l3) network.connect_layers() pr = cProfile.Profile() pr.enable() training_images = os.path.abspath(os.path.join(MAIN_MODULE_PATH, "..", "data", "train-images.idx3-ubyte")) training_labels = os.path.abspath(os.path.join(MAIN_MODULE_PATH, "..", "data", "train-labels.idx1-ubyte")) network.load_data(training_images, training_labels) test_images = os.path.join(MAIN_MODULE_PATH, "..", "data", "t10k-images.idx3-ubyte") test_labels = os.path.join(MAIN_MODULE_PATH, "..", "data", "t10k-labels.idx1-ubyte") network.load_test_data(test_images, test_labels) network.SGD(0.1, 0.1, 30, 10) pr.disable() pr.print_stats(sort="cumtime")
from NeuralNet import NeuralNetwork from NeuronLayer import NeuronLayer import cProfile import os if __name__ == "__main__": l1 = NeuronLayer((28, 28), True, False) l2 = NeuronLayer((100, )) l3 = NeuronLayer((10, ), False, True) network = NeuralNetwork() network.add_layer(l1) network.add_layer(l2) network.add_layer(l3) network.connect_layers() pr = cProfile.Profile() pr.enable() network.load_data(os.path.abspath("data/train-images.idx3-ubyte"), os.path.abspath("data/train-labels.idx1-ubyte")) network.load_test_data(os.path.abspath("data/t10k-images.idx3-ubyte"), os.path.abspath("data/t10k-labels.idx1-ubyte")) network.SGD(0.1, 0.1, 30, 10) pr.disable() pr.print_stats(sort="cumtime")