예제 #1
0
def make_net(sensor_count= 16):
    net = NeuralNetwork([sensor_count, 7, 2], learn_rate=0.05)
    test_db = create_tests(sensor_count)
    # print "\n".join([str(x) for x in test_db])
    random.shuffle(test_db)

    for i in range(5):
        answ = net.calculate(test_db[i][0])
        print(test_db[i][0], test_db[i][1], answ)

    errs = []
    for _ in range(200):
        epoch_error = 0
        for test in test_db:
            y = net.calculate(test[0])
            err = math.sqrt((test[1][0]-y[0])**2 + (test[1][1]-y[1])**2)
            if err < 1.0:
                net.teach(-0.004)
            else:
                net.teach(0.004)
            epoch_error += err
        epoch_error /= len(test_db)
        errs.append(epoch_error)
        print epoch_error

    for i in range(10):
        answ = net.calculate(test_db[i][0])
        print(test_db[i][0], test_db[i][1], answ)

    if __name__=='__main__':
        plt.plot(errs)
        plt.show()

    return net
예제 #2
0
class Animal(object):
    DEBUG = False
    MAX_ENERGY = 30
    ENERGY_FOR_EXIST = 0.007
    MOVE_ENERGY_RATIO = 0.01

    # sensor_count_in_head / sensor_count
    SENSOR_COUNT_IN_HEAD_RATIO = 0.5
    # head angle
    HEAD_ANGLE = math.pi / 4.0
    HALF_HEAD_ANGLE = HEAD_ANGLE / 2.0

    READINESS_TO_BUD_THREADSHOULD = 30
    READINESS_TO_BUD_INCREASEMENT = 0.2
    ENERGY_FULLNES_TO_BUD = 0.7
    ENERGY_FOR_BUD = 5
    MIN_CHILD_COUNT = 1
    MAX_CHILD_COUNT = 3

    MUTATE_VALUE = 0.4
    HALF_MUTATE_VALUE = MUTATE_VALUE / 2
    MUTATE_CHANCE = 0.6

    def __init__(self, world):
        self.world = world
        self._x = randint(0, self.world.width)
        self._y = randint(0, self.world.height)
        self.size = 7
        self.angle = 0

        self.sensor_count = 7
        self._sensor_count_in_head = int(self.sensor_count * Animal.SENSOR_COUNT_IN_HEAD_RATIO)
        self._sensor_count_not_in_head = self.sensor_count - self._sensor_count_in_head
        self.sensor_values = []
        self._sensors_positions = []
        self._sensors_positions_calculated = False

        self.energy = self.ENERGY_FOR_BUD
        self.readiness_to_bud = 0

        self.brain = NeuralNetwork([self.sensor_count, 2, 2])
        # import BrainTrainer
        # self.brain = clone_brain(BrainTrainer.get_new_brain(self.sensor_count))

    @property
    def sensors_positions(self):
        # on 45 degrees (pi/4) of main angle located 75% of all sensors
        if not self._sensors_positions_calculated:
            self._sensors_positions = []

            # calc sensor positions in head


            delta_angle = Animal.HEAD_ANGLE / (self._sensor_count_in_head-1)
            angle = -Animal.HALF_HEAD_ANGLE + self.angle
            for _ in range(self._sensor_count_in_head):
                self._sensors_positions.append(
                    (math.cos(angle) * self.size + self._x, math.sin(angle) * self.size + self._y))
                angle += delta_angle

            # calc sensor positions in body
            delta_angle = (TWO_PI - Animal.HEAD_ANGLE) / (self._sensor_count_not_in_head+1)
            angle = Animal.HALF_HEAD_ANGLE + self.angle
            for _ in range(self._sensor_count_not_in_head):
                angle += delta_angle
                self._sensors_positions.append(
                    (math.cos(angle) * self.size + self._x, math.sin(angle) * self.size + self._y))

            self._sensors_positions_calculated = True
        return self._sensors_positions

    def update(self, sensor_values):
        self.sensor_values = sensor_values
        answer = self.brain.calculate(self.sensor_values)
        self.answer = answer

        self.energy -= Animal.ENERGY_FOR_EXIST

        if self.energy / Animal.MAX_ENERGY > Animal.ENERGY_FULLNES_TO_BUD:
            self.readiness_to_bud += Animal.READINESS_TO_BUD_INCREASEMENT
        if self.readiness_to_bud >= Animal.READINESS_TO_BUD_THREADSHOULD:
            self.readiness_to_bud = 0
            self.bud()

        self.move(answer[0], answer[1])

    def bud(self):
        child_count = randint(Animal.MIN_CHILD_COUNT, Animal.MAX_CHILD_COUNT)
        # if it tries to bud more child than it can - bud so many as it can and die.
        if child_count*Animal.ENERGY_FOR_BUD > self.energy:
            child_count = int(self.energy / Animal.ENERGY_FOR_BUD)
            self.energy = 0

        for _ in range(child_count):
            self.energy -= Animal.ENERGY_FOR_BUD
            child = Animal(self.world)
            child.x = self.x + randint(-30, 30)
            child.y = self.y + randint(-30, 30)
            child.brain = clone_brain(self.brain)
            self.world.add_animal(child)

    def eat(self, food):
        value = min(World.World.EATING_VALUE, max(0, Animal.MAX_ENERGY - self.energy))
        value = food.beating(value)
        self.energy += value

    def move(self, move, rotate):
        self.energy -= (abs(move) + abs(rotate))*Animal.MOVE_ENERGY_RATIO

        self._sensors_positions_calculated = False
        self.angle += rotate
        self._x += math.cos(self.angle) * move * 2.0
        self._y += math.sin(self.angle) * move * 2.0

    @property
    def x(self):
        return self._x

    @x.setter
    def x(self, value):
        self._x = value
        self._sensors_positions_calculated = False

    @property
    def y(self):
        return self._y

    @y.setter
    def y(self, value):
        self._y = value
        self._sensors_positions_calculated = False