예제 #1
0
 def CalcFitness(self, network, layers, outputs):
     client = NetworkClient(self.data)
     fitness = client.testing(layers, outputs, network)
     # print("Fitness for this individual is: ")
     # print(fitness)
     print("Calculated Fitness ", fitness)
     return fitness
 def test_it_all(self):
     data = Data('abalone', pd.read_csv(r'data/abalone.data', header=None), 8, False)
     df = data.df.sample(100)
     data.split_data(data_frame=df)
     client = NetworkClient(data)
     layers, outputset, network = client.train_it(1, 10, .1, .5, 10)
     print(layers)
     print(client.testing(layers, outputset, network))  # prints total
예제 #3
0
 def test_it_all(self):
     data = Data('abalone', pd.read_csv(r'data/abalone.data', header=None), 8, False)
     df = data.df.sample(n=200)
     data.split_data(data_frame=df)
     client = NetworkClient(data)
     layers, outputset, network = client.train_it(1, 10, .3, .5, 15)
     # print(client.testing(layers, outputset, network))  # prints total
     lf = LF()
     pred, actual = client.testing(layers, outputset, network)
     print("Predicted Set, ", pred, " Actual Set: ", actual)
 def test_de(self):
     data = Data('abalone', pd.read_csv(r'data/abalone.data', header=None), 8, False)
     df = data.df.sample(100)
     data.split_data(data_frame=df)
     de_algo = DE(50, .7, 2, 4, data, max_runs=100, mutation_rate=.03)
     bestC = de_algo.run_DE()
     print("Best fitting vector")
     print(bestC.net_vector)
     client = NetworkClient(data)
     network = NeuralNetwork(data)
     new_Net = network.GADEnet(bestC.layers, bestC.net_vector)
     print("Printing testing results")
     print(client.testing(new_Net, bestC.outputs, bestC.network))
예제 #5
0
def run_pop_algos_for_vid():
    "run the pop algos for proj4 vid"
    # setup data to use
    data = Data('abalone', pd.read_csv(r'data/abalone.data', header=None), 8,
                False)
    # take a sample as results do not matter for this
    df = data.df.sample(100)
    data.split_data(data_frame=df)
    gen_algo = GA(1000, 4, data, max_runs=1000, mutation_rate=1)
    print("----------------------- RUNNING THE GA -----------------")
    # get chromosome object from GA
    bestC = gen_algo.run_GA()
    print("Best fitting vector From the GA")
    print(bestC.net_vector)
    client = NetworkClient(data)
    network = NeuralNetwork(data)
    new_Net = network.GADEnet(bestC.layers, bestC.net_vector)
    print("Printing testing results from the GA")
    print(client.testing(new_Net, bestC.outputs, bestC.network))
    print("----------------------- GA DONE -----------------")
    print("---------------------------------------------------")
    print("---------------------------------------------------")
    print("---------------------------------------------------")
    print("----------------------- RUNNING DE -----------------")
    de_algo = DE(10, .7, 2, 4, data, max_runs=100, mutation_rate=.03)
    bestC = de_algo.run_DE()
    print("Best fitting vector from DE")
    print(bestC.net_vector)
    client = NetworkClient(data)
    network = NeuralNetwork(data)
    new_Net = network.GADEnet(bestC.layers, bestC.net_vector)
    print("Printing testing results from DE")
    print(client.testing(new_Net, bestC.outputs, bestC.network))
    print("----------------------- DE DONE -----------------")