예제 #1
0
    def test_Box2DQuad(self):
        """
        Test a quadrilateral mesh of a simple box.
        """
        box = BRepPrimAPI_MakeBox(10, 10, 10).Solid()

        gen = SMESH_Gen()
        mesh = gen.CreateMesh(0, True)

        hyp = NETGENPlugin_SimpleHypothesis_2D(0, 0, gen)
        hyp.SetAllowQuadrangles(True)
        hyp.SetLocalLength(1.0)

        NETGENPlugin_NETGEN_2D(1, 0, gen)

        mesh.ShapeToMesh(box)
        mesh.AddHypothesis(box, 0)
        mesh.AddHypothesis(box, 1)

        success = gen.Compute(mesh, box)
        self.assertTrue(success)

        self.assertEqual(mesh.NbTriangles(), 0)
        self.assertEqual(mesh.NbQuadrangles(), 600)
        self.assertEqual(mesh.NbNodes(), 602)
예제 #2
0
    def test_LocalEdgeLength(self):
        """
        Test a mesh on a box with a local edge length enforced on one edge.
        """
        box = BRepPrimAPI_MakeBox(10, 10, 10).Solid()
        edge = TopExp_Explorer(box, TopAbs_EDGE).Current()

        gen = SMESH_Gen()
        mesh = gen.CreateMesh(0, True)

        hyp3d = NETGENPlugin_SimpleHypothesis_3D(0, 0, gen)
        hyp3d.SetLocalLength(1.0)
        NETGENPlugin_NETGEN_2D3D(1, 0, gen)

        hyp1d = StdMeshers_LocalLength(2, 0, gen)
        hyp1d.SetLength(0.1)
        StdMeshers_Regular_1D(3, 0, gen)

        mesh.ShapeToMesh(box)
        mesh.AddHypothesis(box, 0)
        mesh.AddHypothesis(box, 1)
        mesh.AddHypothesis(edge, 2)
        mesh.AddHypothesis(edge, 3)

        success = gen.Compute(mesh, box)
        self.assertTrue(success)

        self.assertEqual(mesh.NbTetras(), 31547)
        self.assertEqual(mesh.NbNodes(), 6205)
예제 #3
0
def test_Box3D():
    """
    Test a tetrahedral mesh of a simple solid box
    """
    from OCCT.BRepPrimAPI import BRepPrimAPI_MakeBox
    from OCCT.NETGENPlugin import (NETGENPlugin_SimpleHypothesis_3D,
                                   NETGENPlugin_NETGEN_2D3D)
    from OCCT.SMESH import SMESH_Gen

    box = BRepPrimAPI_MakeBox(10, 10, 10).Solid()

    gen = SMESH_Gen()
    mesh = gen.CreateMesh(0, True)

    hyp = NETGENPlugin_SimpleHypothesis_3D(0, 0, gen)
    hyp.SetLocalLength(1.0)

    NETGENPlugin_NETGEN_2D3D(1, 0, gen)

    mesh.ShapeToMesh(box)
    mesh.AddHypothesis(box, 0)
    mesh.AddHypothesis(box, 1)

    success = gen.Compute(mesh, box)
    assert success

    assert mesh.NbTetras() == 4767
    assert mesh.NbNodes() == 1189
예제 #4
0
    def test_Box3D(self):
        """
        Test a tetrahedral mesh of a simple solid box.
        """
        box = BRepPrimAPI_MakeBox(10, 10, 10).Solid()

        gen = SMESH_Gen()
        mesh = gen.CreateMesh(0, True)

        hyp = NETGENPlugin_SimpleHypothesis_3D(0, 0, gen)
        hyp.SetLocalLength(1.0)

        NETGENPlugin_NETGEN_2D3D(1, 0, gen)

        mesh.ShapeToMesh(box)
        mesh.AddHypothesis(box, 0)
        mesh.AddHypothesis(box, 1)

        success = gen.Compute(mesh, box)
        self.assertTrue(success)

        self.assertEqual(mesh.NbTetras(), 4741)
        self.assertEqual(mesh.NbNodes(), 1185)
예제 #5
0
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA
from OCCT.NETGENPlugin import (NETGENPlugin_SimpleHypothesis_3D,
                               NETGENPlugin_NETGEN_2D3D)
from OCCT.SMESH import SMESH_Gen

from OCCT.Exchange import ExchangeBasic
from OCCT.Visualization.WxViewer import ViewerWx

fn = './models/shape_names.step'
shape = ExchangeBasic.read_step(fn)

v = ViewerWx()
v.add(shape)
v.start()

gen = SMESH_Gen()
mesh = gen.CreateMesh(0, True)

hyp = NETGENPlugin_SimpleHypothesis_3D(0, 0, gen)
hyp.SetLocalLength(5)

alg = NETGENPlugin_NETGEN_2D3D(1, 0, gen)

mesh.ShapeToMesh(shape)
mesh.AddHypothesis(shape, 0)
mesh.AddHypothesis(shape, 1)

print('Computing mesh...')
done = gen.Compute(mesh, mesh.GetShapeToMesh())
print('done.')
예제 #6
0
 def __init__(self):
     self._gen = SMESH_Gen()
예제 #7
0
class MeshGen(object):
    """
    This class is the primary meshing database for a given instance.
    """
    def __init__(self):
        self._gen = SMESH_Gen()

    @property
    def object(self):
        """
        :return: The underlying mesh object.
        :rtype: OCCT.SMESH.SMESH_Gen
        """
        return self._gen

    @classmethod
    def wrap(cls, gen):
        """
        Create a new instance using an existing SMESH_Gen instance.

        :param OCCT.SMESH.SMESH_Gen gen: A SMESH_Gen instance.

        :return: The new instance.
        :rtype: afem.smesh.entities.MeshGen
        """
        new_gen = cls.__new__(cls)
        new_gen._gen = gen
        return new_gen

    def new_id(self):
        """
        Generate a new unique ID within this generator.

        :return: A new unique ID.
        :rtype: int
        """
        return self._gen.GetANewId()

    def create_mesh(self, shape=None, is_embedded=False):
        """
        Create a mesh.

        :param afem.topology.entities.Shape shape: The shape to mesh.
        :param bool is_embedded: Option for embedding mesh.

        :return: The mesh.
        :rtype: afem.smesh.entities.Mesh
        """
        the_mesh = Mesh(self, is_embedded)
        if shape is not None:
            the_mesh.shape_to_mesh(shape)
        return the_mesh

    def check_algo_state(self, mesh, shape):
        """
        Check if computation would fail because of some bad algorithm state.

        :param afem.smesh.entities.Mesh mesh: A mesh.
        :param afem.topology.entities.Shape shape: A shape.

        :return: *True* if ok, *False* if not.
        :rtype: bool
        """
        return self._gen.CheckAlgoState(mesh.object, shape.object)

    def compute(self, mesh, shape=None):
        """
        Compute a mesh on a shape.

        :param afem.smesh.entities.Mesh mesh: A mesh.
        :param afem.topology.entities.Shape shape: The shape to compute mesh
            on. If not provided then the shape associated to the mesh is used.

        :return: *True* if computed, *False* if not.
        :rtype: bool

        :raise ValueError: If no shape is available to apply the hypothesis to.
        """
        if shape is None:
            if mesh.has_shape:
                shape = mesh.shape
            else:
                raise ValueError('No shape could be found.')
        return self._gen.Compute(mesh.object, shape.object)
##GNU Lesser General Public License for more details.
##
##You should have received a copy of the GNU Lesser General Public License
##along with pythonOCC.  If not, see <http://www.gnu.org/licenses/>.

from OCCT.BRepPrimAPI import BRepPrimAPI_MakeBox
from OCCT.SMESH import SMESH_Gen
from OCCT.StdMeshers import (StdMeshers_Arithmetic1D, StdMeshers_Regular_1D,
                            StdMeshers_TrianglePreference, StdMeshers_MEFISTO_2D,
                            StdMeshers_QuadranglePreference, StdMeshers_Quadrangle_2D)

#Create the shape to mesh

aShape = BRepPrimAPI_MakeBox(10, 20, 40).Shape()

aMeshGen = SMESH_Gen()
aMesh = aMeshGen.CreateMesh(0, True)

def ComputeMesh(MEFISTO2=False):
    an1DHypothesis = StdMeshers_Arithmetic1D(0,0,aMeshGen)
    #print dir(an1DHypothesis)
    #print an1DHypothesis.SaveTo()
    
    an1DHypothesis.SetLength(1.,False)
    an1DHypothesis.SetLength(2.,True)
    an1DAlgo = StdMeshers_Regular_1D(1,0,aMeshGen)
    
    if MEFISTO2:
    #2D
        a2dHypothseis = StdMeshers_TrianglePreference(2,0,aMeshGen) #define the boundary
        a2dAlgo = StdMeshers_MEFISTO_2D(3,0,aMeshGen)
                         MeshVS_DMF_NodalColorDataPrs)
from OCCT.SMDSAbs import SMDSAbs_Face

from OCC.Display.SimpleGui import init_display
display, start_display, add_menu, add_function_to_menu = init_display()

# First create a 'complex' shape (actually a boolean op between a box and a cylinder)
print('Creating geometry ...', end='')
box = BRepPrimAPI_MakeBox(200, 30, 30).Shape()
sphere = BRepPrimAPI_MakeSphere(gp_Pnt(150, 20, 20), 80).Shape()
aShape = BRepAlgoAPI_Cut(box, sphere).Shape()
print('Done.')

# Create the Mesh
print('Creating mesh ...', end='')
aMeshGen = SMESH_Gen()
aMesh = aMeshGen.CreateMesh(0, True)
print('Done.')

print('Adding hypothesis and algorithms ...', end='')
# 1D
an1DHypothesis = StdMeshers_Arithmetic1D(0, 0,
                                         aMeshGen)  #discretization of the wire
an1DHypothesis.SetLength(5., False)  #the smallest distance between 2 points
an1DHypothesis.SetLength(10., True)  # the longest distance between 2 points
an1DAlgo = StdMeshers_Regular_1D(1, 0, aMeshGen)  # interpolation

# 2D
a2dHypothseis = StdMeshers_QuadranglePreference(2, 0,
                                                aMeshGen)  #define the boundary
a2dAlgo = StdMeshers_Quadrangle_2D(3, 0, aMeshGen)  # the 2D mesh