예제 #1
0
파일: ED.py 프로젝트: Kazjon/SurpriseEval
	timecols = [11]
	valcols = [3,4,5,6,7,8,9,11]
	
	parser = Parser("prunedPhones.csv",namecols,timecols,valcols)
	
	#Get either every dimension or a single dimension
	val1s = [parser.getProperties()[0]]
	val2s = [parser.getProperties()[1]]
	
	weightFactors = [0.2]
	Cs =			[20]
	gammas =		[0.2]


	#'''
	od = ObservedDistribution(parser, val1s[0], contours, val2s[0], weightFactors[0])
	ed = ExpectedDistribution(od,parallel=False)
	edv = ExpectedDistributionVisualiser(ed,od,50,50)
	fig = od.plotObservedContours(title='', alpha=0.25)
	edv.save('dummy.pdf')
	#'''
	
	print "---------------------Parallel=True---------------------"
	for val1 in val1s:
		for val2 in val2s:
			if val1 is not val2:
				start_time = time.time()
				#print "Modelling",val1,"(independent) against",val2,"(dependent)."
				od = ObservedDistribution(parser, val1, contours, val2, weightFactors[0])
				ed = ExpectedDistribution(od,{'C':Cs[0],'gamma':gammas[0]},parallel=True)
				edv = ExpectedDistributionVisualiser(ed,od,50,50)
예제 #2
0
파일: U.py 프로젝트: Kazjon/SurpriseEval
	def __init__(self, parser_train, ind_attr, contours , dep_attr, weight_std_ratio=1, parser_test=None, retrain=True, prefix=None):
		ObservedDistribution.__init__(self, parser_train, ind_attr, contours , dep_attr, weight_std_ratio, retrain, prefix, save=False)
		if parser_test is not None:
			self.addTestData(parser_test)
		else:
			self.test_parser = None