예제 #1
0
    def test_compile_and_run_cont_sparse(self):
        # pylint: disable=protected-access
        model = TreeModel(self.data, self.root)
        expected_values = np.vstack((np.arange(8), [42] * 8)).T
        np.testing.assert_equal(model._values, expected_values)
        self.assertEqual(model._thresholds[0], 13)
        self.assertEqual(model._thresholds.shape, (8, ))

        nan = float("nan")
        x = sp.csr_matrix(
            np.array([[nan, 0, 0], [13, nan, 0], [13, 0, 0], [13, 1, 0],
                      [13, 2, 0], [14, 2, nan], [14, 2, 2], [14, 2, 1]],
                     dtype=float))
        np.testing.assert_equal(model.get_values(x), expected_values)

        x = sp.csc_matrix(
            np.array([[nan, 0, 0], [13, nan, 0], [13, 0, 0], [13, 1, 0],
                      [13, 2, 0], [14, 2, nan], [14, 2, 2], [14, 2, 1]],
                     dtype=float))
        np.testing.assert_equal(model.get_values(x), expected_values)

        x = sp.lil_matrix(
            np.array([[nan, 0, 0], [13, nan, 0], [13, 0, 0], [13, 1, 0],
                      [13, 2, 0], [14, 2, nan], [14, 2, 2], [14, 2, 1]],
                     dtype=float))
        np.testing.assert_equal(model.get_values(x), expected_values)
예제 #2
0
    def test_compile_and_run_cont_sparse(self):
        # pylint: disable=protected-access
        model = TreeModel(self.data, self.root)
        expected_values = np.vstack((np.arange(8), [42] * 8)).T
        np.testing.assert_equal(model._values, expected_values)
        self.assertEqual(model._thresholds[0], 13)
        self.assertEqual(model._thresholds.shape, (8,))

        nan = float("nan")
        x = sp.csr_matrix(np.array(
            [[nan, 0, 0],
             [13, nan, 0],
             [13, 0, 0],
             [13, 1, 0],
             [13, 2, 0],
             [14, 2, nan],
             [14, 2, 2],
             [14, 2, 1]], dtype=float
        ))
        np.testing.assert_equal(model.get_values(x), expected_values)

        x = sp.csc_matrix(np.array(
            [[nan, 0, 0],
             [13, nan, 0],
             [13, 0, 0],
             [13, 1, 0],
             [13, 2, 0],
             [14, 2, nan],
             [14, 2, 2],
             [14, 2, 1]], dtype=float
        ))
        np.testing.assert_equal(model.get_values(x), expected_values)

        x = sp.lil_matrix(np.array(
            [[nan, 0, 0],
             [13, nan, 0],
             [13, 0, 0],
             [13, 1, 0],
             [13, 2, 0],
             [14, 2, nan],
             [14, 2, 2],
             [14, 2, 1]], dtype=float
        ))
        np.testing.assert_equal(model.get_values(x), expected_values)
예제 #3
0
 def test_null_nodes(self):
     a = DiscreteVariable("d4", "ab")
     y = ContinuousVariable("ey")
     domain = Domain([a], y)
     data = Table(domain)
     values = np.array([[42., 43], [44, 45]])
     root = DiscreteNode(a, 0, values[1])
     root.children = [Node(None, -1, values[0]), None]
     model = TreeModel(data, root)
     x = np.array([[0.], [1]])
     np.testing.assert_equal(model.get_values(x), values)
     np.testing.assert_equal(model.get_values_in_python(x), values)
     np.testing.assert_equal(model.get_values_by_nodes(x), values)
    def test_compile_and_run_cont(self):
        # I investigate, I have a warrant
        # pylint: disable=protected-access
        model = TreeModel(self.data, self.root)
        expected_values = np.vstack((np.arange(8), [42] * 8)).T
        np.testing.assert_equal(model._values, expected_values)
        self.assertEqual(model._thresholds[0], 13)
        self.assertEqual(model._thresholds.shape, (8, ))

        nan = float("nan")
        x = np.array(
            [
                [nan, 0, 0],
                [13, nan, 0],
                [13, 0, 0],
                [13, 1, 0],
                [13, 2, 0],
                [14, 2, nan],
                [14, 2, 2],
                [14, 2, 1],
            ],
            dtype=float,
        )
        np.testing.assert_equal(model.get_values(x), expected_values)
        np.testing.assert_equal(model.get_values_in_python(x), expected_values)
        np.testing.assert_equal(model.get_values_by_nodes(x), expected_values)
        np.testing.assert_equal(model.predict(x), np.arange(8).astype(int))

        v1 = ContinuousVariable("d1")
        v2 = DiscreteVariable("d2", "abc")
        v3 = DiscreteVariable("d3", "def")
        y = DiscreteVariable("dy")
        domain = Domain([v1, v2, v3], y)
        data = Table(domain, np.zeros((10, 4)))
        root = NumericNode(v1, 0, 13, np.array([0.0, 42]))
        left = DiscreteNode(v2, 1, np.array([1, 42]))
        left.children = [
            Node(None, None, np.array([x, 42])) for x in [2, 3, 4]
        ]
        right = MappedDiscreteNode(v3, 2, np.array([1, 1, 0]),
                                   np.array([5, 42]))
        right.children = [Node(None, None, np.array([x, 42])) for x in [6, 7]]
        root.children = [left, right]

        model = TreeModel(data, root)
        normalized = expected_values / np.sum(expected_values,
                                              axis=1)[:, np.newaxis]
        np.testing.assert_equal(model.predict(x), normalized)
예제 #5
0
    def test_compile_and_run_cont(self):
        # I investigate, I have a warrant
        # pylint: disable=protected-access
        model = TreeModel(self.data, self.root)
        expected_values = np.vstack((np.arange(8), [42] * 8)).T
        np.testing.assert_equal(model._values, expected_values)
        self.assertEqual(model._thresholds[0], 13)
        self.assertEqual(model._thresholds.shape, (8,))

        nan = float("nan")
        x = np.array(
            [[nan, 0, 0],
             [13, nan, 0],
             [13, 0, 0],
             [13, 1, 0],
             [13, 2, 0],
             [14, 2, nan],
             [14, 2, 2],
             [14, 2, 1]], dtype=float
        )
        np.testing.assert_equal(model.get_values(x), expected_values)
        np.testing.assert_equal(model.get_values_in_python(x), expected_values)
        np.testing.assert_equal(model.get_values_by_nodes(x), expected_values)
        np.testing.assert_equal(model.predict(x), np.arange(8).astype(int))

        v1 = ContinuousVariable("d1")
        v2 = DiscreteVariable("d2", "abc")
        v3 = DiscreteVariable("d3", "def")
        y = DiscreteVariable("dy")
        domain = Domain([v1, v2, v3], y)
        data = Table(domain, np.zeros((10, 4)))
        root = NumericNode(v1, 0, 13, np.array([0., 42]))
        left = DiscreteNode(v2, 1, np.array([1, 42]))
        left.children = [Node(None, None, np.array([x, 42])) for x in [2, 3, 4]]
        right = MappedDiscreteNode(v3, 2, np.array([1, 1, 0]),
                                   np.array([5, 42]))
        right.children = [Node(None, None, np.array([x, 42])) for x in [6, 7]]
        root.children = [left, right]

        model = TreeModel(data, root)
        normalized = \
            expected_values / np.sum(expected_values, axis=1)[:, np.newaxis]
        np.testing.assert_equal(model.predict(x), normalized)