def __call__(self, data, weight_id=None): """ Return a classifier trained on the `data` (`weight_id` is ignored). :param Orange.data.Table data: Training data set. :param int weight_id: Ignored. :rval: Orange.core.LinearClassifier .. note:: The :class:`Orange.core.LinearClassifier` is same class as :class:`Orange.classification.svm.LinearClassifier`. """ if not isinstance(data.domain.class_var, Orange.feature.Discrete): raise TypeError("Can only learn a discrete class.") if data.domain.has_discrete_attributes(False) or self.normalization: dc = DomainContinuizer() dc.multinomial_treatment = self.multinomial_treatment dc.class_treatment = dc.Ignore dc.continuous_treatment = \ dc.NormalizeByVariance if self.normalization else dc.Leave c_domain = dc(data) data = data.translate(c_domain) return super(LibLinearLogRegLearner, self).__call__(data, weight_id)
def _normalize(self, data): dc = DomainContinuizer() dc.class_treatment = DomainContinuizer.Ignore dc.continuous_treatment = DomainContinuizer.NormalizeBySpan dc.multinomial_treatment = DomainContinuizer.AsNormalizedOrdinal newdomain = dc(data) return data.translate(newdomain)
def __call__(self, data, weight_id=None): if not isinstance(data.domain.class_var, Orange.feature.Discrete): raise TypeError("Can only learn a discrete class.") if data.domain.has_discrete_attributes(False) or self.normalization: dc = DomainContinuizer() dc.multinomial_treatment = self.multinomial_treatment dc.class_treatment = dc.Ignore dc.continuous_treatment = dc.NormalizeByVariance if self.normalization else dc.Leave c_domain = dc(data) data = data.translate(c_domain) return super(LibLinearLogRegLearner, self).__call__(data, weight_id)
def __call__(self, data, weight_id=None): if not isinstance(data.domain.class_var, Orange.feature.Discrete): raise TypeError("Can only learn a discrete class.") if data.domain.has_discrete_attributes(False) or self.normalization: dc = DomainContinuizer() dc.multinomial_treatment = self.multinomial_treatment dc.class_treatment = dc.Ignore dc.continuous_treatment = \ dc.NormalizeByVariance if self.normalization else dc.Leave c_domain = dc(data) data = data.translate(c_domain) return super(LibLinearLogRegLearner, self).__call__(data, weight_id)