def update_selection(self): """ Update the graph (pen width) to show the current selection. Filter and output the data. """ if self.areas is None or not self.selection: self.send("Selection", None) return filts = [] for i, area in enumerate(self.areas): if i in self.selection: width = 4 val_x, val_y = area.value_pair filts.append( filter.Values([ filter.FilterDiscrete(self.attrX, [val_x]), filter.FilterDiscrete(self.attrY, [val_y]) ])) else: width = 1 pen = area.pen() pen.setWidth(width) area.setPen(pen) if len(filts) == 1: filts = filts[0] else: filts = filter.Values(filts, conjunction=False) selection = filts(self.discrete_data) if self.discrete_data is not self.data: idset = set(selection.ids) sel_idx = [i for i, id in enumerate(self.data.ids) if id in idset] selection = self.data[sel_idx] self.send("Selection", selection)
def update_selection(self): if self.areas is None or not self.selection: self.send("Selection", None) return filters = [] for i, area in enumerate(self.areas): if i in self.selection: width = 4 val_x, val_y = area.value_pair filters.append( filter.Values([ filter.FilterDiscrete(self.attrX, [val_x]), filter.FilterDiscrete(self.attrY, [val_y]) ])) else: width = 1 pen = area.pen() pen.setWidth(width) area.setPen(pen) if len(filters) == 1: filters = filters[0] else: filters = filter.Values(filters, conjunction=False) self.send("Selection", filters(self.data))
def send_selection(self): if not self.selection or self.data is None: self.send("Selected Data", None) return filters = [] self.warning(6) if self.discrete_data is not self.data: if isinstance(self.data, SqlTable): self.warning( 6, "Selection of continuous variables on SQL is not supported" ) for i in self.selection: cols, vals, area = self.areas[i] filters.append( filter.Values( filter.FilterDiscrete(col, [val]) for col, val in zip(cols, vals))) if len(filters) > 1: filters = filter.Values(filters, conjunction=False) else: filters = filters[0] selection = filters(self.discrete_data) if self.discrete_data is not self.data: idset = set(selection.ids) sel_idx = [i for i, id in enumerate(self.data.ids) if id in idset] selection = self.discrete_data[sel_idx] self.send("Selected Data", selection)
def send_selection(self): if not self.selection or self.data is None: self.Outputs.selected_data.send(None) self.Outputs.annotated_data.send( create_annotated_table(self.data, [])) return filters = [] self.Warning.no_cont_selection_sql.clear() if self.discrete_data is not self.data: if isinstance(self.data, SqlTable): self.Warning.no_cont_selection_sql() for i in self.selection: cols, vals, _ = self.areas[i] filters.append( filter.Values( filter.FilterDiscrete(col, [val]) for col, val in zip(cols, vals))) if len(filters) > 1: filters = filter.Values(filters, conjunction=False) else: filters = filters[0] selection = filters(self.discrete_data) idset = set(selection.ids) sel_idx = [i for i, id in enumerate(self.data.ids) if id in idset] if self.discrete_data is not self.data: selection = self.data[sel_idx] self.Outputs.selected_data.send(selection) self.Outputs.annotated_data.send( create_annotated_table(self.data, sel_idx))
def test_discrete_value_filter_with_None(self): filtered_data = filter.Values( conditions=[filter.FilterDiscrete(3, None)])(self.table) correct_data = [row for row in self.data if row[3] is not None] self.assertEqual(len(filtered_data), len(correct_data)) self.assertSequenceEqual(filtered_data, correct_data)
def test_discrete_value_filter_with_multiple_values(self): filtered_data = filter.Values( conditions=[filter.FilterDiscrete(3, ["a", "b"])])(self.table) correct_data = [row for row in self.data if row[3] in ["a", "b"]] self.assertEqual(len(filtered_data), len(correct_data)) self.assertSequenceEqual(filtered_data, correct_data)
def commit(self): matching_output = self.data non_matching_output = None if self.data: domain = self.data.domain conditions = [] for attr_name, oper, values in self.conditions: attr_index = domain.index(attr_name) attr = domain[attr_index] if isinstance(attr, ContinuousVariable): if any(not v for v in values): continue filter = data_filter.FilterContinuous( attr_index, oper, *[float(v) for v in values]) elif isinstance(attr, StringVariable): if any(v for v in values): continue filter = data_filter.FilterString( attr_index, oper, *[str(v) for v in values]) else: if oper == 2: f_values = None else: if not values or not values[0]: continue values = [attr.values[i - 1] for i in values] if oper == 0: f_values = {values[0]} else: f_values = set(attr.values) f_values.remove(values[0]) filter = data_filter.FilterDiscrete(attr_index, f_values) conditions.append(filter) if conditions: filters = data_filter.Values(conditions) matching_output = filters(self.data) filters.negate = True non_matching_output = filters(self.data) # if hasattr(self.data, "name"): # matching_output.name = self.data.name # non_matching_output.name = self.data.name # # if self.purge_attributes or self.purge_classes: # remover = orange.RemoveUnusedValues(removeOneValued=True) # # newDomain = remover(matching_output, 0, True, self.purge_classes) # if newDomain != matching_output.domain: # matching_output = orange.ExampleTable(newDomain, matching_output) # # newDomain = remover(non_matching_output, 0, True, self.purge_classes) # if newDomain != non_matching_output.domain: # nonmatchingOutput = orange.ExampleTable(newDomain, non_matching_output) self.send("Matching Data", matching_output) self.send("Unmatched Data", non_matching_output) self.update_info(matching_output, self.data_out_rows)
def output_data(self): matching_output = self.data non_matching_output = None if self.data: domain = self.data.domain filters = data_filter.Values() for attr_name, oper, values in self.conditions: attr_index = domain.index(attr_name) attr = domain[attr_index] if isinstance(attr, ContinuousVariable): if any(not v for v in values): continue filter = data_filter.FilterContinuous( attr_index, oper, *[float(v) for v in values]) elif isinstance(attr, StringVariable): if any(v for v in values): continue filter = data_filter.FilterString( attr_index, oper, *[str(v) for v in values]) else: if oper in [2, 3]: raise NotImplementedError( "subset filters for discrete attributes are not " "implemented yet") elif oper == 4: f_values = None else: if not values or not values[0]: continue if oper == 0: f_values = {values[0] - 1} else: f_values = set(range(len(attr.values))) f_values.remove(values[0] - 1) filter = data_filter.FilterDiscrete(attr_index, f_values) filters.conditions.append(filter) matching_output = filters(self.data) filters.negate = True non_matching_output = filters(self.data) if hasattr(self.data, "name"): matching_output.name = self.data.name non_matching_output.name = self.data.name """ if self.purge_attributes or self.purge_classes: remover = orange.RemoveUnusedValues(removeOneValued=True) newDomain = remover(matching_output, 0, True, self.purge_classes) if newDomain != matching_output.domain: matching_output = orange.ExampleTable(newDomain, matching_output) newDomain = remover(non_matching_output, 0, True, self.purge_classes) if newDomain != non_matching_output.domain: nonmatchingOutput = orange.ExampleTable(newDomain, non_matching_output) """ self.send("Matching Data", matching_output) self.send("Unmatched Data", non_matching_output)
def update_selection(self): """ Update the graph (pen width) to show the current selection. Filter and output the data. """ if self.areas is None or not self.selection: self.Outputs.selected_data.send(None) self.Outputs.annotated_data.send(create_annotated_table(self.data, [])) self.info.set_output_summary(self.info.NoOutput) return filts = [] for i, area in enumerate(self.areas): if i in self.selection: width = 4 val_x, val_y = area.value_pair filts.append( filter.Values([ filter.FilterDiscrete(self.attr_x.name, [val_x]), filter.FilterDiscrete(self.attr_y.name, [val_y]) ])) else: width = 1 pen = area.pen() pen.setWidth(width) area.setPen(pen) if len(filts) == 1: filts = filts[0] else: filts = filter.Values(filts, conjunction=False) selection = filts(self.discrete_data) idset = set(selection.ids) sel_idx = [i for i, id in enumerate(self.data.ids) if id in idset] if self.discrete_data is not self.data: selection = self.data[sel_idx] summary = len(selection) if selection is not None else self.info.NoOutput details = format_summary_details(selection) if selection is not None else "" self.info.set_output_summary(summary, details) self.Outputs.selected_data.send(selection) self.Outputs.annotated_data.send(create_annotated_table(self.data, sel_idx))
def get_conditional_distribution(data, attrs): cond_dist = defaultdict(int) dist = defaultdict(int) cond_dist[""] = dist[""] = len(data) all_attrs = [data.domain[a] for a in attrs] if data.domain.class_var is not None: all_attrs.append(data.domain.class_var) for i in range(1, len(all_attrs) + 1): attr = all_attrs[:i] if type(data) == SqlTable: # make all possible pairs of attributes + class_var attr = [a.to_sql() for a in attr] fields = attr + ["COUNT(*)"] query = data._sql_query(fields, group_by=attr) with data._execute_sql_query(query) as cur: res = cur.fetchall() for r in res: str_values = [ a.repr_val(a.to_val(x)) for a, x in zip(all_attrs, r[:-1]) ] str_values = [x if x != "?" else "None" for x in str_values] cond_dist["-".join(str_values)] = r[-1] dist[str_values[-1]] += r[-1] else: for indices in product(*(range(len(a.values)) for a in attr)): vals = [] conditions = [] for k, ind in enumerate(indices): vals.append(attr[k].values[ind]) fd = filter.FilterDiscrete( column=attr[k], values=[attr[k].values[ind]] ) conditions.append(fd) filt = filter.Values(conditions) filtdata = filt(data) cond_dist["-".join(vals)] = len(filtdata) dist[vals[-1]] += len(filtdata) return cond_dist, dist
def commit(self): matching_output = self.data non_matching_output = None annotated_output = None self.Error.clear() if self.data: domain = self.data.domain conditions = [] for attr_name, oper_idx, values in self.conditions: attr_index = domain.index(attr_name) attr = domain[attr_index] operators = self.Operators[type(attr)] opertype, _ = operators[oper_idx] if attr.is_continuous: try: floats = self._values_to_floats(attr, values) except ValueError as e: self.Error.parsing_error(e.args[0]) return if floats is None: continue filter = data_filter.FilterContinuous( attr_index, opertype, *floats) elif attr.is_string: filter = data_filter.FilterString( attr_index, opertype, *[str(v) for v in values]) else: if opertype == FilterDiscreteType.IsDefined: f_values = None else: if not values or not values[0]: continue values = [attr.values[i - 1] for i in values] if opertype == FilterDiscreteType.Equal: f_values = {values[0]} elif opertype == FilterDiscreteType.NotEqual: f_values = set(attr.values) f_values.remove(values[0]) elif opertype == FilterDiscreteType.In: f_values = set(values) else: raise ValueError("invalid operand") filter = data_filter.FilterDiscrete(attr_index, f_values) conditions.append(filter) if conditions: self.filters = data_filter.Values(conditions) matching_output = self.filters(self.data) self.filters.negate = True non_matching_output = self.filters(self.data) row_sel = np.in1d(self.data.ids, matching_output.ids) annotated_output = create_annotated_table(self.data, row_sel) # if hasattr(self.data, "name"): # matching_output.name = self.data.name # non_matching_output.name = self.data.name purge_attrs = self.purge_attributes purge_classes = self.purge_classes if (purge_attrs or purge_classes) and \ not isinstance(self.data, SqlTable): attr_flags = sum([ Remove.RemoveConstant * purge_attrs, Remove.RemoveUnusedValues * purge_attrs ]) class_flags = sum([ Remove.RemoveConstant * purge_classes, Remove.RemoveUnusedValues * purge_classes ]) # same settings used for attributes and meta features remover = Remove(attr_flags, class_flags, attr_flags) matching_output = remover(matching_output) non_matching_output = remover(non_matching_output) annotated_output = remover(annotated_output) if matching_output is not None and not len(matching_output): matching_output = None if non_matching_output is not None and not len(non_matching_output): non_matching_output = None if annotated_output is not None and not len(annotated_output): annotated_output = None self.Outputs.matching_data.send(matching_output) self.Outputs.unmatched_data.send(non_matching_output) self.Outputs.annotated_data.send(annotated_output) self.match_desc = report.describe_data_brief(matching_output) self.nonmatch_desc = report.describe_data_brief(non_matching_output) self.update_info(matching_output, self.data_out_rows, "Out: ")
def commit(self): matching_output = self.data non_matching_output = None self.error() if self.data: domain = self.data.domain conditions = [] for attr_name, oper_idx, values in self.conditions: attr_index = domain.index(attr_name) attr = domain[attr_index] operators = self.Operators[type(attr)] opertype, _ = operators[oper_idx] if attr.is_continuous: if any(not v for v in values): continue # Parse datetime strings into floats if isinstance(attr, TimeVariable): try: values = [attr.parse(v) for v in values] except ValueError as e: self.error(e.args[0]) return filter = data_filter.FilterContinuous( attr_index, opertype, *[float(v) for v in values]) elif attr.is_string: filter = data_filter.FilterString( attr_index, opertype, *[str(v) for v in values]) else: if opertype == FilterDiscreteType.IsDefined: f_values = None else: if not values or not values[0]: continue values = [attr.values[i - 1] for i in values] if opertype == FilterDiscreteType.Equal: f_values = {values[0]} elif opertype == FilterDiscreteType.NotEqual: f_values = set(attr.values) f_values.remove(values[0]) elif opertype == FilterDiscreteType.In: f_values = set(values) else: raise ValueError("invalid operand") filter = data_filter.FilterDiscrete(attr_index, f_values) conditions.append(filter) if conditions: self.filters = data_filter.Values(conditions) matching_output = self.filters(self.data) self.filters.negate = True non_matching_output = self.filters(self.data) # if hasattr(self.data, "name"): # matching_output.name = self.data.name # non_matching_output.name = self.data.name purge_attrs = self.purge_attributes purge_classes = self.purge_classes if (purge_attrs or purge_classes) and \ not isinstance(self.data, SqlTable): attr_flags = sum([ Remove.RemoveConstant * purge_attrs, Remove.RemoveUnusedValues * purge_attrs ]) class_flags = sum([ Remove.RemoveConstant * purge_classes, Remove.RemoveUnusedValues * purge_classes ]) # same settings used for attributes and meta features remover = Remove(attr_flags, class_flags, attr_flags) matching_output = remover(matching_output) non_matching_output = remover(non_matching_output) self.send("Matching Data", matching_output) self.send("Unmatched Data", non_matching_output) self.match_desc = report.describe_data_brief(matching_output) self.nonmatch_desc = report.describe_data_brief(non_matching_output) self.update_info(matching_output, self.data_out_rows, "Out: ")
def commit(self): matching_output = self.data non_matching_output = None if self.data: domain = self.data.domain conditions = [] for attr_name, oper, values in self.conditions: attr_index = domain.index(attr_name) attr = domain[attr_index] if attr.is_continuous: if any(not v for v in values): continue filter = data_filter.FilterContinuous( attr_index, oper, *[float(v) for v in values]) elif attr.is_string: filter = data_filter.FilterString( attr_index, oper, *[str(v) for v in values]) else: if oper == 3: f_values = None else: if not values or not values[0]: continue values = [attr.values[i - 1] for i in values] if oper == 0: f_values = {values[0]} elif oper == 1: f_values = set(attr.values) f_values.remove(values[0]) elif oper == 2: f_values = set(values) else: raise ValueError("invalid operand") filter = data_filter.FilterDiscrete(attr_index, f_values) conditions.append(filter) if conditions: filters = data_filter.Values(conditions) matching_output = filters(self.data) filters.negate = True non_matching_output = filters(self.data) # if hasattr(self.data, "name"): # matching_output.name = self.data.name # non_matching_output.name = self.data.name purge_attrs = self.purge_attributes purge_classes = self.purge_classes if (purge_attrs or purge_classes) and \ not isinstance(self.data, SqlTable): attr_flags = sum([ Remove.RemoveConstant * purge_attrs, Remove.RemoveUnusedValues * purge_attrs ]) class_flags = sum([ Remove.RemoveConstant * purge_classes, Remove.RemoveUnusedValues * purge_classes ]) # same settings used for attributes and meta features remover = Remove(attr_flags, class_flags, attr_flags) matching_output = remover(matching_output) non_matching_output = remover(non_matching_output) self.send("Matching Data", matching_output) self.send("Unmatched Data", non_matching_output) self.match_desc = report.describe_data_brief(matching_output) self.nonmatch_desc = report.describe_data_brief(non_matching_output) self.update_info(matching_output, self.data_out_rows)