def create_learner(self): kernel = ["linear", "poly", "rbf", "sigmoid"][self.kernel_type] common_args = { 'kernel': kernel, 'degree': self.degree, 'gamma': self.gamma or self._default_gamma, 'coef0': self.coef0, 'tol': self.tol, 'max_iter': self.max_iter if self.limit_iter else -1, 'preprocessors': self.preprocessors } if self.svm_type == self.SVM: return SVMLearner(C=self.C, epsilon=self.epsilon, **common_args) else: return NuSVMLearner(nu=self.nu, C=self.nu_C, **common_args)
def create_learner(self): kernel = ["linear", "poly", "rbf", "sigmoid"][self.kernel_type] common_args = { "kernel": kernel, "degree": self.degree, "gamma": self.gamma or self._default_gamma, "coef0": self.coef0, "probability": True, "tol": self.tol, "max_iter": self.max_iter if self.limit_iter else -1, "preprocessors": self.preprocessors, } if self.svm_type == self.SVM: return SVMLearner(C=self.C, epsilon=self.epsilon, **common_args) else: return NuSVMLearner(nu=self.nu, C=self.nu_C, **common_args)