def test_transform_changed_domain(self): """ 1. Open data, apply some preprocessor, splits the data into two parts, use LDA on the first part, and then transform the second part. 2. Open data, split into two parts, apply the same preprocessor and LDA only on the first part, and then transform the second part. The transformed second part in (1) and (2) has to be the same. """ data = Table("iris") data = Randomize()(data) preprocessor = Continuize() lda = LDA() # normalize all ndata = preprocessor(data) model = lda(ndata[:75]) result_1 = model(ndata[75:]) # normalize only the "training" part ndata = preprocessor(data[:75]) model = lda(ndata) result_2 = model(data[75:]) np.testing.assert_almost_equal(result_1.X, result_2.X)
def test_lda(self): iris = Table('iris') n_components = 2 lda = LDA(solver="eigen", n_components=n_components) model = lda(iris) transformed = model(iris) self.assertEqual(transformed.X.shape, (len(iris), n_components)) self.assertEqual(transformed.Y.shape, (len(iris),))
def test_lda(self): iris = Table("iris") n_components = 2 lda = LDA(n_components=n_components) model = lda(iris) transformed = model(iris) self.assertEqual(transformed.X.shape, (len(iris), n_components)) self.assertEqual(transformed.Y.shape, (len(iris),))
def init_projection(self): if self.placement == Placement.Circular: self.projector = CircularPlacement() elif self.placement == Placement.LDA: self.projector = LDA(solver="eigen", n_components=2) elif self.placement == Placement.PCA: self.projector = PCA(n_components=2) self.projector.component = 2 self.projector.preprocessors = PCA.preprocessors + [Normalize()] super().init_projection()