def test_predict_sparse(self): sparse_data = self.housing.to_sparse() booster = CatGBRegressor() model = booster(sparse_data) pred = model(sparse_data) self.assertEqual(pred.shape, (len(sparse_data),)) self.assertGreater(all(pred), 0)
def test_set_params(self): booster = CatGBRegressor(n_estimators=42, max_depth=4) self.assertEqual(booster.params["n_estimators"], 42) self.assertEqual(booster.params["max_depth"], 4) model = booster(self.housing) params = model.cat_model.get_params() self.assertEqual(params["n_estimators"], 42) self.assertEqual(params["max_depth"], 4)
def test_default_parameters_reg(self): data = Table("housing") booster = CatGBRegressor() model = booster(data) params = model.cat_model.get_all_params() self.assertEqual(self.editor.n_estimators, 100) self.assertEqual(params["iterations"], 1000) self.assertEqual(params["depth"], self.editor.max_depth) self.assertEqual(params["l2_leaf_reg"], self.editor.lambda_) self.assertEqual(params["rsm"], self.editor.colsample_bylevel) self.assertEqual(self.editor.learning_rate, 0.3)
def test_scorer(self): booster = CatGBRegressor() self.assertIsInstance(booster, Scorer) booster.score(self.housing)
def test_predict_numpy(self): booster = CatGBRegressor() model = booster(self.housing) pred = model(self.housing.X) self.assertEqual(pred.shape, (len(self.housing),)) self.assertGreater(all(pred), 0)
def test_predict_single_instance(self): booster = CatGBRegressor() model = booster(self.housing) for ins in self.housing: pred = model(ins) self.assertGreater(pred, 0)
def test_GBTrees(self): booster = CatGBRegressor() cv = CrossValidation(k=10) results = cv(self.housing, [booster]) RMSE(results)