예제 #1
0
 def __init__( self, ParNames, AnaFiles = [ ], RefFile = '' ) :
     assert ParNames and hasattr( ParNames, '__iter__' ) and hasattr( ParNames, '__len__' ) and len(ParNames) > 0, 'P2VV'\
            'P2VV - ERROR: fitResultsAnalysis: no parameter names specified'
     self._parNames = ParNames
     from P2VV.Parameterizations.FullPDFs import PdfConfiguration
     self._refPars = PdfConfiguration()
     self._anaPars = PdfConfiguration()
     self._refParVals = [ None ] * len(self._parNames)
     self._anaParVals = { }
     self._parHists = { }
     self._nFiles = 0
     self.readRefFile(RefFile)
     self.readAnaFiles(AnaFiles)
예제 #2
0
massPdfPars = sWeightMassPdf.getParameters(preDataSet)

if model == 'ipatia2' :
    # set values of constant Ipatia 2 parameters
    from P2VV.Utilities.General import getSplitPar
    for splitCat in sWeightMassPdf.indexCat() :
        sWeightMassPdf.indexCat().setIndex( splitCat.getVal() )
        KKState = observables['KKMassCat'].getLabel()
        for it, parName in enumerate(constSplitPars) :
            par = getSplitPar( parName, KKState, massPdfPars )
            par.setVal( constSplitVals[KKState][it] )

if parFileIn or parFileOut :
    # create PDF configuration object
    from P2VV.Parameterizations.FullPDFs import PdfConfiguration as PdfConfig
    pdfConfig = PdfConfig()

print 120 * '='
if parFileIn :
    # read parameters from file
    pdfConfig.readParametersFromFile( filePath = parFileIn )
    pdfConfig.setParametersInPdf(sWeightMassPdf)
print 'P2VV - INFO: createBs2JpsiKKDataSet: observables in mass PDF:'
massPdfObs.Print('v')
print 'P2VV - INFO: createBs2JpsiKKDataSet: parameters in mass PDF:'
massPdfPars.Print('v')

# determine mass parameters with a fit
print 'P2VV - INFO: createBs2JpsiKKDataSet: fitting mass PDF'
simMassFitResult = sWeightMassPdf.fitTo( preDataSet, Save = True, SumW2Error = False, NumCPU = args.numCPU, Optimize = 1, Timer = True
                                        , Minimizer = 'Minuit2', Strategy = 1, Offset = True, Hesse = runHesse, Minos = minosPars )
예제 #3
0
        pdf = SimultaneousPdf( protoPdf.GetName() + '_simul', MasterPdf = protoPdf
                              , SplitCategories = splitCats, SplitParameters = splitPars )

        # set values of split parameters
        for par, vals in tResPars.iteritems() :
            for cat, val in vals.iteritems() : ws[ par + '_' + cat ].setVal(val)
        for par, vals in SWaveAmps.iteritems() :
            for cat, val in vals.iteritems() : ws[ par + '_' + cat ].setVal(val)

    else :
        pdf = protoPdf

if parFileIn :
    # read parameter values from file
    from P2VV.Parameterizations.FullPDFs import PdfConfiguration
    pdfConfig = PdfConfiguration()
    pdfConfig.readParametersFromFile( filePath = parFileIn )
    pdfConfig.setParametersInPdf(pdf)


###########################################################################################################################################
## compute angular efficiency moments ##
########################################

# print PDF, data, variables and parameters
print '\nData set:'
data.Print()

if normPdf :
    print '\nPDF:'
    pdf.Print()
예제 #4
0
    if valPos < 0 :
        print 'plotNLL: ERROR: file "%s" is not an NLL file for parameter "%s"' % ( filePath, testParName )

if parValsNLL :
    minNLL = min(nllVals)
    parValsNLLArr = array( 'd', parValsNLL )
    nllValsArr = array( 'd', [ val - minNLL for val in nllVals ] )

# get fit values
parValsFit = [ ]
nllValsFit = [ ]

from P2VV.Parameterizations.FullPDFs import PdfConfiguration
for filePath in fitFilePaths :
    pdfConfig = PdfConfiguration()
    fitStatus = pdfConfig.readParametersFromFile( filePath, Verbose = False )
    if fitStatus[0] != 0 :
        print 'plotNLL: WARNING: fit status is "%d" for fit "%s"' % ( fitStatus[0], filePath )
    assert testParName in pdfConfig.parameters(), 'plotNLL: ERROR: "%s" not in parameters of file "%s"' % ( testParName, filePath )

    parVal = pdfConfig.parameters()[testParName][0]
    pos = 0
    for it in range( len(parValsFit) ) :
        if parVal > parValsFit[it] :
            break
        pos += 1
    parValsFit.insert( pos, parVal )
    nllValsFit.insert( pos, fitStatus[1] )

print parValsFit
예제 #5
0
class fitResultsAnalysis(object) :
    def __init__( self, ParNames, AnaFiles = [ ], RefFile = '' ) :
        assert ParNames and hasattr( ParNames, '__iter__' ) and hasattr( ParNames, '__len__' ) and len(ParNames) > 0, 'P2VV'\
               'P2VV - ERROR: fitResultsAnalysis: no parameter names specified'
        self._parNames = ParNames
        from P2VV.Parameterizations.FullPDFs import PdfConfiguration
        self._refPars = PdfConfiguration()
        self._anaPars = PdfConfiguration()
        self._refParVals = [ None ] * len(self._parNames)
        self._anaParVals = { }
        self._parHists = { }
        self._nFiles = 0
        self.readRefFile(RefFile)
        self.readAnaFiles(AnaFiles)

    def readRefFile( self, file ) :
        self._refParVals = [ None ] * len(self._parNames)
        if file :
            self._refPars.readParametersFromFile( filePath = file )
            parVals = self._refPars.parameters()
            for parIt, name in enumerate(self._parNames) :
                assert name in parVals\
                       , 'P2VV - ERROR: fitResultsAnalysis.readRefFile(): parameter "%s" not found in file "%s"' % ( name, file )
                self._refParVals[parIt] = ( parVals[name][0], parVals[name][1] )

    def readAnaFiles( self, files ) :
        self._anaParVals = dict( [ ( name, [ ] ) for name in self._parNames ] )
        self._nFiles = 0
        if files :
            fileStats = { }
            for file in files :
                fitStatus = self._anaPars.readParametersFromFile( filePath = file, Verbose = False )
                if fitStatus[0] :
                    print 'P2VV - WARNING: fitResultsAnalysis.readAnaFiles(): fit status %d for file "%s"' % ( fitStatus[0], file )
                if not fitStatus[0] in fileStats :
                    fileStats[ fitStatus[0] ] = 1
                else :
                    fileStats[ fitStatus[0] ] += 1

                parVals = self._anaPars.parameters()
                for name, vals in self._anaParVals.iteritems() :
                    assert name in parVals\
                           , 'P2VV - ERROR: fitResultsAnalysis.readAnaFiles(): parameter "%s" not found in file "%s"' % ( name, file )
                    vals.append( parVals[name][ : 2 ] )

            self._nFiles = sum( stats for stats in fileStats.itervalues() )
            print 'P2VV - INFO: fitResultsAnalysis.readAnaFiles(): read %d parameter files for analysis (fit status: %s)'\
                  % ( self._nFiles, ', '.join( '%d: %d' % ( stat, count ) for stat, count in fileStats.iteritems() ) )

    def processResults( self, **kwargs ) :
        if not self._anaParVals or self._nFiles == 0 :
            print 'P2VV - WARNING: fitResultsAnalysis.processResults(): no parameter values available for analysis'
            return

        histsFile = kwargs.pop( 'HistsFile', '' ).split('.')[0]
        anaParSetts = kwargs.pop( 'ParSettings', { } )
        toyMode = kwargs.pop( 'ToyMode', False )

        self._nParVals = [ [ 0, 0, 0 ] for name in self._parNames ]
        self._maxPulls = [ 0. for name in self._parNames ]
        self._parVals = [ [ ] for name in self._parNames ]
        self._parSums = [ [ 0., 0. ] for name in self._parNames ]
        self._errSums = [ 0. for name in self._parNames ]
        self._pullVals = [ [ ] for name in self._parNames ]
        self._pullSums = [ [ 0., 0., 0., 0., 0., 0. ] for name in self._parNames ]
        if histsFile :
            from P2VV.Load import LHCbStyle
            from ROOT import TH1D, TLine, TCanvas, kFullDotLarge, kBlue
            dCanv = TCanvas('dummy')
            dCanv.Print( histsFile + '_pars.pdf[' )
            dCanv.Print( histsFile + '_pulls.pdf[' )

            def drawHist( parName, parHist, fileName, doFit = False, refVal = None ) :
                print 'P2VV - INFO: fitResultsAnalysis.processResults(): drawing "%s" histogram' % parName
                parSetts = anaParSetts[parName] if parName in anaParSetts else { }
                self._parHists[parName] = parHist
                parHist.GetXaxis().SetNdivisions( 7, 5, 0 )
                parHist.SetTitleOffset( 1.15, 'x' )
                parHist.SetTitleOffset( 1.05, 'y' )
                parHist.SetXTitle( parSetts['name'] if 'name' in parSetts else parName )
                parHist.SetYTitle('Entries / %.2g' % parHist.GetBinWidth(1) )
                parHist.SetMarkerStyle(kFullDotLarge)
                parHist.SetMarkerSize(0.7)
                parHist.SetLineWidth(2)
                if doFit :
                    parHist.Fit('gaus')
                    fitFunc = parHist.GetFunction('gaus')
                    fitFunc.SetNpx(1000)
                    fitFunc.SetLineWidth(3)
                    fitFunc.SetLineColor(kBlue)

                histMax = -1.
                for bin in range( 1, parHist.GetNbinsX() + 1 ) :
                    val = parHist.GetBinContent(bin) + parHist.GetBinErrorUp(bin)
                    if val > histMax : histMax = val
                assert histMax > 0.
                histMax *= 1.05
                parHist.SetMinimum(0.)
                parHist.SetMaximum(histMax)

                canv = TCanvas(parName)
                canv.SetLeftMargin(0.19)
                canv.SetRightMargin(0.05)
                canv.SetBottomMargin(0.21)
                canv.SetTopMargin(0.05)
                parHist.Draw('E1')
                if refVal != None :
                    line = TLine()
                    line.DrawLine( refVal, 0., refVal, histMax )
                canv.Print(fileName)

        for parIt, name in enumerate(self._parNames) :
            isPhase = name in anaParSetts and 'isPhase' in anaParSetts[name] and anaParSetts[name]['isPhase']
            from math import floor, pi
            for vals in self._anaParVals[name] :
                self._nParVals[parIt][0] += 1
                val = vals[0]
                if self._refParVals[parIt] != None :
                    diff = val - self._refParVals[parIt][0]
                    if isPhase and abs(diff) >= pi :
                        nShift = floor( 0.5 * ( diff / pi + 1. ) )
                        val -= nShift * 2. * pi
                        diff -= nShift * 2. * pi
                    pull = diff / ( vals[1] if toyMode else self._refParVals[parIt][1] )
                    self._nParVals[parIt][ 2 if pull < 0. else 1 ] += 1
                    if abs(pull) > self._maxPulls[parIt] : self._maxPulls[parIt] = abs(pull)
                    self._pullVals[parIt].append(pull)
                    self._pullSums[parIt][ 1 if pull < 0. else 0 ] += pull
                    self._pullSums[parIt][ 3 if pull < 0. else 2 ] += pull**2
                    self._pullSums[parIt][ 5 if pull < 0. else 4 ] += pull**4
                self._parVals[parIt].append(val)
                self._parSums[parIt][0] += val
                self._parSums[parIt][1] += val**2
                self._errSums[parIt] += vals[1]

            if name in self._parHists and self._parHists[name] :
                self._parHists[name].Delete()
            if histsFile :
                parMinMax = anaParSetts[name]['parMinMax'] if name in anaParSetts and 'parMinMax' in anaParSetts[name] else None
                parHistBins = anaParSetts[name]['parHistBins'] if name in anaParSetts and 'parHistBins' in anaParSetts[name]\
                              else int( float(self._nParVals[parIt][0]) / 250. ) if self._nParVals[parIt][0] > 1000 else 10
                plotShift = anaParSetts[name]['plotShift'] if name in anaParSetts and 'plotShift' in anaParSetts[name] else 0.
                parHistMin = parMinMax[0] if parMinMax else min( self._parVals[parIt] ) + plotShift
                parHistMax = parMinMax[1] if parMinMax else max( self._parVals[parIt] ) + plotShift
                parHistRange = parHistMax - parHistMin
                if not parMinMax and parHistRange > 0. :
                    parHistMin = parHistMin - 0.01 * parHistRange
                    parHistMax = parHistMax + 0.01 * parHistRange
                parHist = TH1D( name + '_par', name, parHistBins, parHistMin, parHistMax )
                for val in self._parVals[parIt] : parHist.Fill( val + plotShift )
                doParFit = name in anaParSetts and 'doParFit' in anaParSetts[name] and anaParSetts[name]['doParFit']
                drawHist( name, parHist, histsFile + '_pars.pdf', doParFit
                         , self._refParVals[parIt][0] + plotShift if self._refParVals[parIt] != None else None )

                pullMinMax = anaParSetts[name]['pullMinMax'] if name in anaParSetts and 'pullMinMax' in anaParSetts[name] else None
                pullHistBins = anaParSetts[name]['pullHistBins'] if name in anaParSetts and 'pullHistBins' in anaParSetts[name]\
                               else int( float(self._nParVals[parIt][0]) / 250. ) if self._nParVals[parIt][0] > 1000 else 10
                pullHistMin = pullMinMax[0] if pullMinMax else min( self._pullVals[parIt] )
                pullHistMax = pullMinMax[1] if pullMinMax else max( self._pullVals[parIt] )
                pullHistRange = pullHistMax - pullHistMin
                if not pullMinMax and pullHistRange > 0. :
                    pullHistMin = pullHistMin - 0.01 * pullHistRange
                    pullHistMax = pullHistMax + 0.01 * pullHistRange
                pullHist = TH1D( name + '_pull', name, pullHistBins, pullHistMin, pullHistMax )
                for val in self._pullVals[parIt] : pullHist.Fill(val)
                doPullFit = name in anaParSetts and 'doPullFit' in anaParSetts[name] and anaParSetts[name]['doPullFit']
                drawHist(name, pullHist, histsFile + '_pulls.pdf', doPullFit, 0. )

        if histsFile :
            dCanv.Print( histsFile + '_pars.pdf]' )
            dCanv.Print( histsFile + '_pulls.pdf]' )

        for valCounts in self._nParVals :
            assert valCounts[0] == self._nFiles and ( valCounts[1] + valCounts[2] == self._nFiles or self._refParVals[0] == None )

        from math import sqrt, log10, ceil
        nameLen = min( 30, max( len(name) for name in self._parNames ) )
        sepStr = ' ' + '-' * ( nameLen + ( 167 if self._refParVals[0] != None else 32 ) )
        print 'P2VV - INFO: fitResultsAnalysis.processResults(): parameter statistics for %d files:' % self._nFiles
        print sepStr
        print ( '  {0:<%ds}   {1:<22s}' % nameLen ).format( 'name', 'measured' ),
        if self._refParVals[0] != None :
            print '   {0:<18s}   {1:<20s}   {2:<19s}   {3:<19s}   {4:<19s}   {5:<6s}   {6:<6s}   {7:<8s}'\
                  .format( 'reference', 'pull mean', 'mean error', 'pull RMS', 'width error', '+RMS', '-RMS', 'max pull' )
        else :
            print
        print sepStr
        for name, nParVals, maxPull, parSums, errSums, pullSums, refVal\
                in zip( self._parNames, self._nParVals, self._maxPulls, self._parSums, self._errSums, self._pullSums, self._refParVals ) :
            meanVal = parSums[0] / float( nParVals[0] )
            meanSqVal = parSums[1] / float( nParVals[0] )
            stdDev = sqrt( meanSqVal - meanVal**2 )
            precDev = max( 0, 3 - int( ceil( log10(stdDev) ) ) )
            prec = max( 0, 3 - int( ceil( log10( refVal[1] ) ) ) ) if refVal != None else precDev
            print ( '  {0:<%ds}   {1:<+8.%df}   {2:<11.%df}' % ( nameLen, prec, precDev ) ).format( name, meanVal, stdDev ),
            if refVal != None :
                refErr = errSums / float( nParVals[0] ) if toyMode else refVal[1]
                pullMean = ( pullSums[0] + pullSums[1] ) / float( nParVals[0] )
                pullVar = ( pullSums[2] + pullSums[3] ) / float( nParVals[0] )
                pullVarVar = ( pullSums[4] + pullSums[5] ) / float( nParVals[0] )
                meanErr = sqrt( ( pullVar - pullMean**2 ) / float( nParVals[0] ) )
                width = sqrt(pullVar)
                widthErr = 0.5 / sqrt(pullVar) * sqrt( ( pullVarVar - pullVar**2 ) / float( nParVals[0] ) )
                widthPlus = sqrt( pullSums[2] / float( nParVals[1] ) ) if nParVals[1] > 0 else 0.
                widthMin  = sqrt( pullSums[3] / float( nParVals[2] ) ) if nParVals[2] > 0 else 0.
                print ( '   {0:<+8.%df}   {1:<7.%df}   {2:<+6.3f} / {3:<+11.%df}   {4:<5.3f} / {5:<11.%df}   {6:<5.3f} / {7:<11.%df}   {8:<5.3f} / {9:<11.%df}   {10:<6.3f}   {11:<6.3f}   {12:<8.3f}'\
                        % ( prec, prec, precDev, precDev, precDev, precDev ) )\
                        .format( refVal[0], refErr, pullMean, pullMean * refErr, meanErr, meanErr * refErr
                                , width, width * refErr, widthErr, widthErr * refErr, widthPlus, widthMin, maxPull )
            else :
                print
        print sepStr
예제 #6
0
print 13 * ' ' + 'split parameters:'
for it, pars in enumerate(splitPars) :
    print 13 * ' ' + '%2d: pars: [ %s ]' % ( it, ', '.join( par.GetName() for par in pars[0] ) )
    print 13 * ' ' + '    cats: [ %s ]' % ', '.join( cat.GetName() for cat in pars[1] )
from P2VV.RooFitWrappers import SimultaneousPdf
simMassPdf = SimultaneousPdf(  massPdf.GetName() + '_simul'
                             , MasterPdf       = massPdf
                             , SplitCategories = [ pars[1] for pars in splitPars ]
                             , SplitParameters = [ pars[0] for pars in splitPars ]
                            )
massPdfObs  = simMassPdf.getObservables(dataSet)
massPdfPars = simMassPdf.getParameters(dataSet)

# create PDF configuration object
from P2VV.Parameterizations.FullPDFs import PdfConfiguration as PdfConfig
pdfConfig = PdfConfig()

# read parameters from file
print 120 * '='
pdfConfig.readParametersFromFile( filePath = args.parFilePathIn )
pdfConfig.setParametersInPdf(simMassPdf)
print 'P2VV - INFO: splitDataSetSigBkg: observables in mass PDF:'
massPdfObs.Print('v')
print 'P2VV - INFO: splitDataSetSigBkg: parameters in mass PDF:'
massPdfPars.Print('v')


###########################################################################################################################################
## split data into signal and background ##
###########################################