for it, pars in enumerate(splitPars) : print 13 * ' ' + '%2d: pars: [ %s ]' % ( it, ', '.join( par.GetName() for par in pars[0] ) ) print 13 * ' ' + ' cats: [ %s ]' % ', '.join( cat.GetName() for cat in pars[1] ) from P2VV.RooFitWrappers import SimultaneousPdf sWeightMassPdf = SimultaneousPdf( massPdf.GetName() + '_simul' , MasterPdf = massPdf , SplitCategories = [ pars[1] for pars in splitPars ] , SplitParameters = [ pars[0] for pars in splitPars ] ) massPdfObs = sWeightMassPdf.getObservables(preDataSet) massPdfPars = sWeightMassPdf.getParameters(preDataSet) if model == 'ipatia2' : # set values of constant Ipatia 2 parameters from P2VV.Utilities.General import getSplitPar for splitCat in sWeightMassPdf.indexCat() : sWeightMassPdf.indexCat().setIndex( splitCat.getVal() ) KKState = observables['KKMassCat'].getLabel() for it, parName in enumerate(constSplitPars) : par = getSplitPar( parName, KKState, massPdfPars ) par.setVal( constSplitVals[KKState][it] ) if parFileIn or parFileOut : # create PDF configuration object from P2VV.Parameterizations.FullPDFs import PdfConfiguration as PdfConfig pdfConfig = PdfConfig() print 120 * '=' if parFileIn : # read parameters from file pdfConfig.readParametersFromFile( filePath = parFileIn )
# categories for splitting the PDF if not options.prescaled: split_cats = [[excl_biased]] # get mass parameters that are split split_params = [[par for par in mass_pdf.Parameters() if par.getAttribute("Yield")]] # build simultaneous mass PDF from P2VV.RooFitWrappers import SimultaneousPdf sWeight_mass_pdf = SimultaneousPdf( mass_pdf.GetName() + "_simul", MasterPdf=mass_pdf, SplitCategories=split_cats, SplitParameters=split_params ) # set yields for categories split_cat = sWeight_mass_pdf.indexCat() split_vars = sWeight_mass_pdf.getVariables() from P2VV.Utilities.General import getSplitPar from math import sqrt for state in split_cat: sigYield = getSplitPar("N_signal", state.GetName(), split_vars) bkgYield = getSplitPar("N_background", state.GetName(), split_vars) selStr = "{0} == {0}::{1}".format(split_cat.GetName(), state.GetName()) nEv = data.sumEntries() nEvBin = data.sumEntries(selStr) sigYield.setVal(sigYield.getVal() * nEvBin / nEv) sigYield.setError(sqrt(sigYield.getVal()))
splitPars[-1].add(par1) splitParsDict.pop(par1) # build simultaneous mass PDF print 'P2VV - INFO: createB2CCFitNTuple: building simultaneous PDF "%s":' % ( massPdf.GetName() + '_simul' ) print 13 * ' ' + 'splitting categories: [ %s ]' % ' ], [ '.join(', '.join(cat.GetName() for cat in cats) for cats in splitCats) print 13 * ' ' + 'split parameters: [ %s ]' % ' ], [ '.join(', '.join(par.GetName() for par in pars) for pars in splitPars) from P2VV.RooFitWrappers import SimultaneousPdf sWeightMassPdf = SimultaneousPdf( massPdf.GetName() + '_simul' , MasterPdf = massPdf , SplitCategories = splitCats , SplitParameters = splitPars ) # set yields for categories splitCat = sWeightMassPdf.indexCat() splitCatIter = splitCat.typeIterator() splitCatState = splitCatIter.Next() massPdfPars = sWeightMassPdf.getVariables() from P2VV.Utilities.General import getSplitPar from math import sqrt while splitCatState : KKMassState = -1 if splitCat.isFundamental() : selStr = '!(%s-%d)' % ( splitCat.GetName(), splitCatState.getVal() ) if splitCat.GetName() == observables['KKMassCat'].GetName() : KKMassState = splitCatState.getVal() else : splitCat.setLabel( splitCatState.GetName() ) selStr = ' && '.join( '!(%s-%d)' % ( cat.GetName(), cat.getIndex() ) for cat in splitCat.inputCatList() ) if observables['KKMassCat'] in splitCats[0] : for cat in splitCat.inputCatList() :
########################################################################################################################################### ## split data into signal and background ## ########################################### # create integration sets from ROOT import RooArgSet intSet = RooArgSet() normSet = RooArgSet( massPdfObs.find('mass') ) # get signal and background mass PDFs comps = [ 'sig', 'cbkg' ] yields = dict( sig = { }, cbkg = { } ) pdfs = dict( sig = { }, cbkg = { } ) from P2VV.Utilities.General import getSplitPar splitCat = simMassPdf.indexCat() for state in splitCat : stateName = state.GetName() yields['sig'][stateName] = getSplitPar( 'N_sigMass', stateName, massPdfPars ).getVal() yields['cbkg'][stateName] = getSplitPar( 'N_cbkgMass', stateName, massPdfPars ).getVal() if genMass : pdfs['sig'][stateName] = simMassPdf.getPdf(stateName).pdfList().at(0) pdfs['cbkg'][stateName] = simMassPdf.getPdf(stateName).pdfList().at(1) else : pdfs['sig'][stateName] = simMassPdf.getPdf(stateName).pdfList().at(0).createIntegral( intSet, normSet ) pdfs['cbkg'][stateName] = simMassPdf.getPdf(stateName).pdfList().at(1).createIntegral( intSet, normSet ) for comp in comps : yields[comp]['total'] = sum( y for y in yields[comp].itervalues() ) print 'P2VV - INFO: signal and background yields:' for comp in comps :