예제 #1
0
def main(sat_sensor, in_file):
    """
    对L3数据进行合成
    :param sat_sensor: 卫星+传感器
    :param in_file: yaml 文件
    :return:
    """
    # ######################## 初始化 ###########################
    # 获取程序所在位置,拼接配置文件
    app = InitApp(sat_sensor)
    if app.error:
        print "Load config file error."
        return

    gc = app.global_config
    sc = app.sat_config

    log = LogServer(gc.path_out_log)

    # 加载全局配置信息

    # 加载程序配置信息

    # 加载卫星配置信息

    # ######################## 开始处理 ###########################
    print "-" * 100
    print "Start plot combine map."

    if not os.path.isfile(in_file):
        log.error("File is not exist: {}".format(in_file))
        return

    print "<<< {}".format(in_file)

    combine = CombineL3()  # 初始化一个合成实例
    combine.load_yaml(in_file)  # 加载 yaml 文件

    with time_block("One combine time", switch=TIME_TEST):
        combine.combine()
    with time_block("One write time", switch=TIME_TEST):
        combine.write()

    if not combine.error:
        print ">>> {}".format(combine.ofile)
    else:
        print "Error: Combine days error: {}".format(in_file)

    print '-' * 100
예제 #2
0
def main(sat_sensor, in_file):
    """
    :param sat_sensor: (str) 卫星对
    :param in_file: (str) 输入文件
    :return:
    """
    # ######################## 初始化 ###########################
    # 获取程序所在位置,拼接配置文件
    app = InitApp(sat_sensor)
    if app.error:
        print "Load config file error."
        return

    gc = app.global_config
    sc = app.sat_config

    log = LogServer(gc.path_out_log)

    # 全局配置接口
    out_path = gc.path_mid_ncep
    # 程序配置接口

    # 卫星配置接口
    suffix = sc.ncep2byte_filename_suffix
    ncep_table = sc.ncep2byte_ncep_table
    ######################### 开始处理 ###########################
    print "-" * 100
    print "Start ncep to byte."
    if not os.path.isfile(in_file):
        log.error("File is not exist: {}".format(in_file))
        return

    print "<<< {}".format(in_file)

    ymdhm = _get_ymdhm(in_file)
    out_file = _get_out_file(in_file, out_path, suffix)

    # 判断是否使用新命令进行处理
    if int(ymdhm) >= 201501221200:
        new = True
    else:
        new = False

    if pb_io.is_none(in_file, out_file, ncep_table):
        log.error("Error: {}".format(in_file))
        return

    ncep2byte = Ncep2Byte(in_file, out_file, new=new, ncep_table=ncep_table)
    ncep2byte.ncep2byte()

    if not ncep2byte.error:
        print ">>> {}".format(ncep2byte.out_file)
    else:
        log.error("Error: {}".format(in_file))

    print "-" * 100
예제 #3
0
def main(sat_sensor, in_file):
    """
    对L3数据进行合成
    :param sat_sensor: 卫星+传感器
    :param in_file: yaml 文件
    :return:
    """
    # ######################## 初始化 ###########################
    # 获取程序所在位置,拼接配置文件
    app = InitApp(sat_sensor)
    if app.error:
        print "Load config file error."
        return

    gc = app.global_config
    sc = app.sat_config
    yc = Config(in_file)
    log = LogServer(gc.path_out_log)

    # 加载全局配置信息
    sat_sensor1 = sat_sensor.split('_')[1]
    sat_sensor2 = sat_sensor.split('_')[0]
    sat1, sensor1 = sat_sensor1.split('+')
    sat2, sensor2 = sat_sensor2.split('+')
    # 加载卫星配置信息
    s_channel1 = sc.name
    s_channel2 = sc.name
    # 加载业务配置信息
    # ######################## 开始处理 ###########################
    print "-" * 100
    print "Start plot verify result."

    if not os.path.isfile(in_file):
        log.error("File is not exist: {}".format(in_file))
        return

    print "<<< {}".format(in_file)

    in_files = yc.path_ipath
    # 加载数据
    cross_data = ReadCrossDataL2()
    cross_data.read_cross_data(in_files=in_files)

    # 循环通道数据
    info = {}
    for channel in cross_data.data:
        point_count_min = 10

        if not isinstance(cross_data.data[channel], dict):
            continue

        ref_s2 = cross_data.data[channel]['MERSI_FovMean']

        fine_count = len(ref_s2)
        print '---INFO--- {} Points: {}'.format(channel, fine_count)
        if fine_count < point_count_min:
            print '***WARNING***Dont have enough point to plot: < {}'.format(
                point_count_min)
            continue

        ref_s1 = cross_data.data[channel]['MODIS_FovMean']
        lat = cross_data.data[channel]['MERSI_Lats']
        lon = cross_data.data[channel]['MERSI_Lons']

        # 过滤 3 倍std之外的点
        mean_ref_s2 = np.nanmean(ref_s2)
        std_ref_s2 = np.nanstd(ref_s2)
        min_ref_s2 = mean_ref_s2 - 3 * std_ref_s2
        max_ref_s2 = mean_ref_s2 + 3 * std_ref_s2
        idx = np.logical_and(ref_s2 >= min_ref_s2, ref_s2 <= max_ref_s2)
        ref_s2 = ref_s2[idx]
        ref_s1 = ref_s1[idx]
        lat = lat[idx]
        lon = lon[idx]

        # 计算相对偏差和绝对偏差
        bias = Bias()
        absolute_bias = bias.absolute_deviation(ref_s1, ref_s2)
        relative_bias = bias.relative_deviation(ref_s1, ref_s2)

        mean_absolute = np.nanmean(absolute_bias)
        std_absolute = np.nanstd(absolute_bias)
        amount_absolute = len(absolute_bias)
        median_absolute = np.nanmedian(absolute_bias)
        rms_absolute = rms(absolute_bias)

        mean_relative = np.nanmean(relative_bias)
        std_relative = np.nanstd(relative_bias)
        amount_relative = len(relative_bias)
        median_relative = np.nanmedian(relative_bias)
        rms_relative = rms(relative_bias)

        mean_ref_s1 = np.nanmean(ref_s1)
        std_ref_s1 = np.nanstd(ref_s1)
        amount_ref_s1 = len(ref_s1)
        median_ref_s1 = np.nanmedian(ref_s1)
        rms_ref_s1 = rms(ref_s1)

        mean_ref_s2 = np.nanmean(ref_s2)
        std_ref_s2 = np.nanstd(ref_s2)
        amount_ref_s2 = len(ref_s2)
        median_ref_s2 = np.nanmedian(ref_s2)
        rms_ref_s2 = rms(ref_s2)

        ###################################  #######################################
        # 绘制直方图
        channel1 = channel
        index_channel1 = s_channel1.index(channel1)
        channel2 = s_channel2[index_channel1]
        title_hist_sat1 = '{}_{} Histogram'.format(sat_sensor1, channel1)
        title_hist_sat2 = '{}_{} Histogram'.format(sat_sensor2, channel2)
        x_label_hist_sat1 = '{} {}'.format(channel2, sat_sensor1)
        x_label_hist_sat2 = '{} {}'.format(channel2, sat_sensor2)
        y_label_hist = 'Count'
        bins_count = 200
        picture_path = yc.path_opath
        picture_name_sat1 = 'Histogram_{}_{}.png'.format(sat_sensor1, channel1)
        picture_name_sat2 = 'Histogram_{}_{}.png'.format(sat_sensor2, channel2)

        annotate_hist_sat1 = {
            'left_top': [
                '{}@Mean={:.4f}'.format(channel1, mean_ref_s1),
                '{}@Std={:.4f}'.format(channel1, std_ref_s1),
                '{}@Median={:.4f}'.format(channel1, median_ref_s1),
                '{}@RMS={:.4f}'.format(channel1, rms_ref_s1),
                '{}@Count={:4d}'.format(channel1, amount_ref_s1),
            ]
        }
        annotate_hist_sat2 = {
            'left_top': [
                '{}@Mean={:.4f}'.format(channel2, mean_ref_s2),
                '{}@Std={:.4f}'.format(channel2, std_ref_s2),
                '{}@Median={:.4f}'.format(channel2, median_ref_s2),
                '{}@RMS={:.4f}'.format(channel2, rms_ref_s2),
                '{}@Count={:4d}'.format(channel2, amount_ref_s2),
            ]
        }
        picture_file_sat1 = os.path.join(picture_path, picture_name_sat1)
        picture_file_sat2 = os.path.join(picture_path, picture_name_sat2)
        plot_histogram(
            data=ref_s1,
            title=title_hist_sat1,
            x_label=x_label_hist_sat1,
            y_label=y_label_hist,
            bins_count=bins_count,
            out_file=picture_file_sat1,
            ymd_start=yc.info_ymd_s,
            ymd_end=yc.info_ymd_e,
            annotate=annotate_hist_sat1,
        )
        plot_histogram(
            data=ref_s2,
            title=title_hist_sat2,
            x_label=x_label_hist_sat2,
            y_label=y_label_hist,
            bins_count=bins_count,
            out_file=picture_file_sat2,
            ymd_start=yc.info_ymd_s,
            ymd_end=yc.info_ymd_e,
            annotate=annotate_hist_sat2,
        )
        # 绘制回归图
        title_regression = '{}_{} {}_{} Diagonal Regression'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        x_label_regression = '{} {}'.format(channel1, sat_sensor1)
        y_label_regression = '{} {}'.format(channel2, sat_sensor2)
        annotate_regression = {
            'left_top': [
                'MERSI@Mean={:.4f}'.format(mean_ref_s2),
                'MERSI@Std={:.4f}'.format(std_ref_s2),
                'MERSI@Median={:.4f}'.format(median_ref_s2),
                'MERSI@RMS={:.4f}'.format(rms_ref_s2),
                'MERSI@Count={:4d}'.format(amount_ref_s2),
            ]
        }
        picture_path = yc.path_opath
        picture_name_regression = 'Diagonal_Regression_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_file_regression = os.path.join(picture_path,
                                               picture_name_regression)
        plot_regression(data_x=ref_s1,
                        data_y=ref_s2,
                        out_file=picture_file_regression,
                        title=title_regression,
                        x_label=x_label_regression,
                        y_label=y_label_regression,
                        ymd_start=yc.info_ymd_s,
                        ymd_end=yc.info_ymd_e,
                        annotate=annotate_regression,
                        plot_zero=False)

        ################################### 偏差 #######################################
        fix_point = sc.plot_scatter_fix_ref
        fix_dif, fix_pdif = get_dif_pdif(ref_s1, ref_s2, fix_point)
        annotate_absolute = {
            'left_top': [
                'Dif@{:.2f}={:.4f}'.format(fix_point, fix_dif),
                'Dif@Mean={:.4f}'.format(mean_absolute),
                'Dif@Std={:.4f}'.format(std_absolute),
                'Dif@Median={:.4f}'.format(median_absolute),
                'Dif@RMS={:.4f}'.format(rms_absolute),
                'Dif@Count={:4d}'.format(amount_absolute),
            ]
        }
        annotate_relative = {
            'left_top': [
                'PDif@{:.2f}={:.4f}'.format(fix_point, fix_pdif),
                'PDif@Mean={:.4f}'.format(mean_relative),
                'PDif@Std={:.4f}'.format(std_relative),
                'PDif@Median={:.4f}'.format(median_relative),
                'PDif@RMS={:.4f}'.format(rms_relative),
                'PDif@Count={:4d}'.format(amount_relative),
            ]
        }

        # 绘制偏差直方图
        channel1 = channel
        index_channel1 = s_channel1.index(channel1)
        channel2 = s_channel2[index_channel1]
        title_hist = '{}_{} {}_{} Histogram'.format(sat_sensor1, channel1,
                                                    sat_sensor2, channel2)
        x_label_hist_absolute = 'Dif  {}-{}'.format(sensor1, sensor2)
        x_label_hist_relative = 'PDif  ({}/{})-1'.format(sensor1, sensor2)
        y_label_hist = 'Count'
        bins_count = 200
        picture_path = yc.path_opath
        picture_name_absolute = 'Histogram_Dif_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_name_relative = 'Histogram_PDif_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        annotate_hist_absolute = annotate_absolute
        annotate_hist_relative = annotate_relative
        picture_file_absolute = os.path.join(picture_path,
                                             picture_name_absolute)
        picture_file_relative = os.path.join(picture_path,
                                             picture_name_relative)
        plot_histogram(
            data=absolute_bias,
            title=title_hist,
            x_label=x_label_hist_absolute,
            y_label=y_label_hist,
            bins_count=bins_count,
            out_file=picture_file_absolute,
            ymd_start=yc.info_ymd_s,
            ymd_end=yc.info_ymd_e,
            annotate=annotate_hist_absolute,
        )
        plot_histogram(
            data=relative_bias,
            title=title_hist,
            x_label=x_label_hist_relative,
            y_label=y_label_hist,
            bins_count=bins_count,
            out_file=picture_file_relative,
            ymd_start=yc.info_ymd_s,
            ymd_end=yc.info_ymd_e,
            annotate=annotate_hist_relative,
        )
        # 绘制偏差散点图
        title_scatter = '{}_{} {}_{} Scattergram'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        y_label_scatter_absolute = 'Dif  {}-{}'.format(sensor1, sensor2)
        y_label_scatter_relative = 'PDif  ({}/{})-1'.format(sensor1, sensor2)
        x_label_scatter = '{} {}'.format(channel2, sat_sensor2)
        annotate_scatter_absolute = annotate_absolute
        annotate_scatter_relative = annotate_relative
        picture_path = yc.path_opath
        picture_name_absolute = 'Scattergram_Dif_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_name_relative = 'Scattergram_PDif_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_file_absolute = os.path.join(picture_path,
                                             picture_name_absolute)
        picture_file_relative = os.path.join(picture_path,
                                             picture_name_relative)
        plot_regression(data_x=ref_s2,
                        data_y=absolute_bias,
                        out_file=picture_file_absolute,
                        title=title_scatter,
                        x_label=x_label_scatter,
                        y_label=y_label_scatter_absolute,
                        ymd_start=yc.info_ymd_s,
                        ymd_end=yc.info_ymd_e,
                        annotate=annotate_scatter_absolute,
                        plot_slope=False,
                        plot_zero=False)
        plot_regression(data_x=ref_s2,
                        data_y=relative_bias,
                        out_file=picture_file_relative,
                        title=title_scatter,
                        x_label=x_label_scatter,
                        y_label=y_label_scatter_relative,
                        ymd_start=yc.info_ymd_s,
                        ymd_end=yc.info_ymd_e,
                        annotate=annotate_scatter_relative,
                        plot_slope=False,
                        plot_zero=False)
        # 绘制偏差全球分布图
        title_map_absolute = '{}_{} {}_{} Global Distribution Dif {}-{}'.format(
            sat_sensor1, channel1, sat_sensor2, channel2, sensor1, sensor2)
        title_map_relative = '{}_{} {}_{} Global Distribution PDif ({}/{})-1'.format(
            sat_sensor1, channel1, sat_sensor2, channel2, sensor1, sensor2)

        picture_name_absolute = 'Map_Dif_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_name_relative = 'Map_PDif_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_path = yc.path_opath
        picture_file_map_absolute = os.path.join(picture_path,
                                                 picture_name_absolute)
        picture_file_map_relative = os.path.join(picture_path,
                                                 picture_name_relative)

        plot_bias_map(lat=lat,
                      lon=lon,
                      data=absolute_bias,
                      out_file=picture_file_map_absolute,
                      title=title_map_absolute)
        plot_bias_map(lat=lat,
                      lon=lon,
                      data=relative_bias,
                      out_file=picture_file_map_relative,
                      title=title_map_relative,
                      vmin=-0.2,
                      vmax=0.2)

    keys = info.keys()
    keys.sort()
    for channel in keys:
        print 'CHANNEL: {} POINT: {}'.format(channel, info[channel])
    print '-' * 100
예제 #4
0
def main(sat_sensor, in_file):
    """
    绘制 HDF5.dataset 的快视图。支持真彩图和灰度图
    :param sat_sensor: 卫星+传感器
    :param in_file: HDF5 文件
    :return: 
    """
    # ######################## 初始化 ###########################
    # 获取程序所在位置,拼接配置文件
    app = InitApp(sat_sensor)
    if app.error:
        print "Load config file error."
        return

    gc = app.global_config
    sc = app.sat_config

    log = LogServer(gc.path_out_log)
    log = LogServer(gc.path_out_log)

    # 加载全局配置信息

    # 加载程序配置信息

    # 加载卫星配置信息
    dataset = sc.plt_quick_view_rgb_dataset
    rgb_suffix = sc.plt_quick_view_rgb_suffix
    colorbar_range = sc.plt_quick_view_img_colorbar_range
    log10_set = sc.plt_quick_view_img_log10_set
    log10_ticks = sc.plt_quick_view_img_log10_ticks
    log10_tick_labels = sc.plt_quick_view_img_log10_tick_labels

    # ######################## 开始处理 ###########################
    print '-' * 100
    print "Start plot quick view picture."
    if not os.path.isfile(in_file):
        log.error("File not exist: {}".format(in_file))
        return

    print "<<< {}".format(in_file)
    in_file_name = os.path.splitext(in_file)[0]

    # 绘制真彩图
    out_picture = "{}_{}.{}".format(in_file_name, rgb_suffix, "png")

    # 如果文件已经存在,跳过
    if not os.path.isfile(out_picture):
        r_set, g_set, b_set = dataset
        rgb = RGB(in_file, r_set, g_set, b_set, out_picture)
        rgb.plot()
        if not rgb.error:
            print ">>> {}".format(out_picture)
            print '-' * 100
        else:
            print "Error: Plot RGB error: {}".format(in_file)
    else:
        print "File is already exist, skip it: {}".format(out_picture)

    # 绘制热度图
    for legend in colorbar_range:
        dataset_name = legend[0]  # 数据集名称
        vmax = float(legend[1])  # color bar 范围 最大值
        vmin = float(legend[2])  # color bar 范围 最小值

        out_picture = "{}_{}.{}".format(in_file_name, dataset_name.replace("Aod", "AOD"), "png")
        # 如果文件已经存在,跳过
        if os.path.isfile(out_picture):
            print "File is already exist, skip it: {}".format(out_picture)
            continue

        heat_map = {
            "vmin": vmin,
            "vmax": vmax,
            "cmap": "jet",
            "fill_value": -32767,
        }
        if dataset_name in log10_set:
            if dataset_name == "Ocean_TSM":
                log10_ticks.append(2.00)
                log10_tick_labels.append("100")
            if dataset_name == "Ocean_YS443":
                log10_ticks = log10_ticks[:-3]
                log10_tick_labels = log10_tick_labels[:-3]
            heat_map["colorbar_ticks"] = log10_ticks
            heat_map["colorbar_tick_label"] = log10_tick_labels

        lats, lons = get_lats_lons(in_file)
        lat_lon_text = _get_lat_lon_text(lats, lons)
        if is_none(lats, lons):
            lat_lon_line = None
        else:
            lat_lon_line = {
                "lats": lats,  # 经度数据集名称
                "lons": lons,  # 维度数据集名称
                "step": 5.0,  # 线密度
                "line_width": 0.01,
                "text": lat_lon_text,
            }

        quick_view = QuickView(in_file, dataset_name, out_picture, main_view=heat_map,
                               lat_lon_line=lat_lon_line)
        quick_view.plot()

        if not quick_view.error:
            print ">>> {}".format(quick_view.out_picture)
        else:
            print "Error: Plot heat view error: {}".format(in_file)
            print '-' * 100
예제 #5
0
def main(sat_sensor, in_file):
    """
    对L2数据进行合成
    :param sat_sensor: 卫星+传感器
    :param in_file: yaml 文件
    :return:
    """
    # ######################## 初始化 ###########################
    # 获取程序所在位置,拼接配置文件
    app = InitApp(sat_sensor)
    if app.error:
        print "Load config file error."
        return

    gc = app.global_config
    sc = app.sat_config

    log = LogServer(gc.path_out_log)

    # 加载全局配置信息

    # 加载程序配置信息

    # 加载卫星配置信息
    res = sc.project_res
    half_res = deg2meter(res) / 2.
    cmd = sc.project_cmd % (half_res, half_res)
    row = sc.project_row
    col = sc.project_col

    combine_quick = sc.combine_quick

    # ######################## 开始处理 ###########################
    print "-" * 100
    print "Start combine."

    if not os.path.isfile(in_file):
        log.error("File is not exist: {}".format(in_file))
        return

    print "<<< {}".format(in_file)

    if not combine_quick:
        combine = CombineL2()  # 初始化一个投影实例
        combine.load_cmd_info(cmd=cmd, res=res, row=row, col=col)
        combine.load_yaml(in_file)  # 加载 yaml 文件

        with time_block("One combine time:", switch=TIME_TEST):
            combine.combine()
    else:
        combine = CombineL2Quick()  # 初始化一个投影实例
        combine.load_cmd_info(cmd=cmd, res=res, row=row, col=col)
        combine.load_yaml(in_file)  # 加载 yaml 文件

        with time_block("One combine time:", switch=TIME_TEST):
            combine.combine()

        with time_block("One write time:", switch=TIME_TEST):
            combine.write()

    if not combine.error:
        print ">>> {}".format(combine.ofile)
    else:
        print "Error: Combine day error: {}".format(in_file)

    print "-" * 100
예제 #6
0
def main(sat_sensor, in_file):
    """
    对L3数据进行合成
    :param sat_sensor: 卫星+传感器
    :param in_file: yaml 文件
    :return:
    """
    # ######################## 初始化 ###########################
    # 获取程序所在位置,拼接配置文件
    app = InitApp(sat_sensor)
    if app.error:
        print "Load config file error."
        return

    gc = app.global_config
    sc = app.sat_config
    yc = Config(in_file)
    log = LogServer(gc.path_out_log)

    # 加载全局配置信息
    sat_sensor1 = sat_sensor.split('_')[1]
    sat_sensor2 = sat_sensor.split('_')[0]
    sat1, sensor1 = sat_sensor1.split('+')
    sat2, sensor2 = sat_sensor2.split('+')
    # 加载卫星配置信息
    s_channel1 = sc.name
    s_channel2 = sc.name
    timseries_channels_config = sc.timeseries_l2_channels
    # 加载业务配置信息
    # ######################## 开始处理 ###########################
    print "-" * 100
    print "Start plot verify result."

    if not os.path.isfile(in_file):
        log.error("File is not exist: {}".format(in_file))
        return

    print "<<< {}".format(in_file)

    all_files = yc.path_ipath
    # 加载数据
    data_absolute = dict()
    data_relative = dict()
    date = dict()
    ref_s1_all = dict()
    ref_s2_all = dict()
    amount_all = dict()
    date_start = ymd2date(yc.info_ymd_s)
    date_end = ymd2date(yc.info_ymd_e)

    point_count_min = 2

    result = dict()
    while date_start <= date_end:
        ymd_now = date_start.strftime('%Y%m%d')
        in_files = get_one_day_files(all_files=all_files, ymd=ymd_now, ext='.h5',
                                     pattern_ymd=r'.*_(\d{8})')
        cross_data = ReadCrossDataL2()
        cross_data.read_cross_data(in_files=in_files)

        # 循环通道数据
        for channel in cross_data.data:

            if channel not in data_absolute:
                data_absolute[channel] = list()
            if channel not in data_relative:
                data_relative[channel] = list()
            if channel not in date:
                date[channel] = list()
            if channel not in ref_s1_all:
                ref_s1_all[channel] = list()
            if channel not in ref_s2_all:
                ref_s2_all[channel] = list()
            if channel not in amount_all:
                amount_all[channel] = list()
            if channel not in result:
                result[channel] = dict()

            if not isinstance(cross_data.data[channel], dict):
                continue

            ref_s2 = cross_data.data[channel]['MERSI_FovMean']

            fine_count = len(ref_s2)
            print '---INFO--- {} Points: {}'.format(channel, fine_count)
            if fine_count < point_count_min:
                print '***WARNING***Dont have enough point to plot: < {}'.format(point_count_min)
                continue

            ref_s1 = cross_data.data[channel]['MODIS_FovMean']

            # 过滤 3 倍std之外的点
            mean_ref_s2 = np.nanmean(ref_s2)
            std_ref_s2 = np.nanstd(ref_s2)
            min_ref_s2 = mean_ref_s2 - 3 * std_ref_s2
            max_ref_s2 = mean_ref_s2 + 3 * std_ref_s2
            idx = np.logical_and(ref_s2 >= min_ref_s2, ref_s2 <= max_ref_s2)
            ref_s2 = ref_s2[idx]
            ref_s1 = ref_s1[idx]

            # 计算相对偏差和绝对偏差
            bias = Bias()
            absolute_bias = bias.absolute_deviation(ref_s1, ref_s2)
            relative_bias = bias.relative_deviation(ref_s1, ref_s2)
            data_absolute[channel].append(np.mean(absolute_bias))
            data_relative[channel].append(np.mean(relative_bias))
            date[channel].append(date_start)

            mean_absolute = np.nanmean(absolute_bias)
            std_absolute = np.nanstd(absolute_bias)
            amount_absolute = len(absolute_bias)
            median_absolute = np.nanmedian(absolute_bias)
            rms_absolute = rms(absolute_bias)

            mean_relative = np.nanmean(relative_bias)
            std_relative = np.nanstd(relative_bias)
            amount_relative = len(relative_bias)
            median_relative = np.nanmedian(relative_bias)
            rms_relative = rms(relative_bias)

            mean_ref_s1 = np.nanmean(ref_s1)
            std_ref_s1 = np.nanstd(ref_s1)
            amount_ref_s1 = len(ref_s1)
            median_ref_s1 = np.nanmedian(ref_s1)
            rms_ref_s1 = rms(ref_s1)
            ref_s1_all[channel].append(mean_ref_s1)

            mean_ref_s2 = np.nanmean(ref_s2)
            std_ref_s2 = np.nanstd(ref_s2)
            amount_ref_s2 = len(ref_s2)
            median_ref_s2 = np.nanmedian(ref_s2)
            rms_ref_s2 = rms(ref_s2)
            ref_s2_all[channel].append(mean_ref_s2)
            amount_all[channel].append(amount_ref_s1)

            fix_point = sc.plot_scatter_fix_ref
            f025_absolute, f025_relative = get_dif_pdif(ref_s1, ref_s2, fix_point)
            result_names = ['Dif_mean', 'Dif_std', 'Dif_median', 'Dif_count',
                            'Dif_rms', 'Dif_025',
                            'PDif_mean', 'PDif_std', 'PDif_median', 'PDif_count',
                            'PDif_rms', 'PDif_025',
                            '{}_MODIS_mean'.format(channel), '{}_MODIS_std'.format(channel), '{}_MODIS_median'.format(channel), '{}_MODIS_count'.format(channel),
                            '{}_MODIS_rms'.format(channel),
                            '{}_MERSI_mean'.format(channel), '{}_MERSI_std'.format(channel), '{}_MERSI_median'.format(channel), '{}_MERSI_count'.format(channel),
                            '{}_MERSI_rms'.format(channel),
                            'Date']
            datas = [mean_absolute, std_absolute, median_absolute, amount_absolute,
                     rms_absolute, f025_absolute,
                     mean_relative, std_relative, median_relative, amount_relative,
                     rms_relative, f025_relative,
                     mean_ref_s1, std_ref_s1, median_ref_s1, amount_ref_s1,
                     rms_ref_s1,
                     mean_ref_s2, std_ref_s2, median_ref_s2, amount_ref_s2,
                     rms_ref_s2,
                     ymd_now]
            for result_name, data in zip(result_names, datas):
                if result_name not in result[channel]:
                    result[channel][result_name] = list()
                else:
                    result[channel][result_name].append(data)

        date_start = date_start + relativedelta(days=1)

    for channel in data_absolute:

        plot_config = timseries_channels_config[channel]
        dif_y_range = plot_config.get('dif_y_range')
        pdif_y_range = plot_config.get('pdif_y_range')
        ref_s1_y_range = plot_config.get('ref_s1_y_range')
        ref_s2_y_range = plot_config.get('ref_s2_y_range')
        count_y_range = plot_config.get('count_y_range')

        absolute_bias = data_absolute[channel]
        if len(absolute_bias) == 0:
            print 'Dont have enough point to plot, is 0: {}'.format(channel)
            continue
        relative_bias = data_relative[channel]
        date_channel = date[channel]
        ref_s1_channel = ref_s1_all[channel]
        ref_s2_channel = ref_s2_all[channel]
        amount_channel = amount_all[channel]
        # 绘制时间序列图
        channel1 = channel
        index_channel1 = s_channel1.index(channel1)
        channel2 = s_channel2[index_channel1]
        title_series = '{}_{} {}_{} Time Series'.format(sat_sensor1, channel1, sat_sensor2,
                                                        channel2)
        title_ref_s1 = '{}_{} {} Time Series'.format(channel1, sat_sensor1, channel1)
        title_ref_s2 = '{}_{} {} Time Series'.format(channel2, sat_sensor2, channel2)
        title_amount = '{}_{} {}_{} Matched Points Count Time Series'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        y_label_series_absolute = 'Dif  {}-{}'.format(sensor1, sensor2)
        y_label_series_relative = 'PDif  ({}/{})-1'.format(sensor1, sensor2)
        y_label_ref_s1 = '{}'.format(channel1)
        y_label_ref_s2 = '{}'.format(channel2)
        y_label_amount = 'Count'
        picture_path = yc.path_opath

        # 孙凌添加,出两张图,限制Y轴坐标的图和不限制Y轴坐标的图,这里是限制Y轴坐标的图
        picture_name_absolute = 'Time_Series_Dif_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_name_relative = 'Time_Series_PDif_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_name_ref_s1 = 'Time_Series_{}_{}.png'.format(sat_sensor1, channel1)
        picture_name_ref_s2 = 'Time_Series_{}_{}.png'.format(sat_sensor2, channel2)
        picture_name_amount = 'Time_Series_Count_{}_{}_{}_{}.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_file_absolute = os.path.join(picture_path, picture_name_absolute)
        picture_file_relative = os.path.join(picture_path, picture_name_relative)
        picture_file_ref_s1 = os.path.join(picture_path, picture_name_ref_s1)
        picture_file_ref_s2 = os.path.join(picture_path, picture_name_ref_s2)
        picture_file_amount = os.path.join(picture_path, picture_name_amount)

        plot_time_series(day_data_x=date_channel, day_data_y=absolute_bias,
                         y_range=dif_y_range,
                         out_file=picture_file_absolute,
                         title=title_series, y_label=y_label_series_absolute,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e, )
        plot_time_series(day_data_x=date_channel, day_data_y=relative_bias,
                         y_range=pdif_y_range,
                         out_file=picture_file_relative,
                         title=title_series, y_label=y_label_series_relative,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e, )
        plot_time_series(day_data_x=date_channel, day_data_y=ref_s1_channel,
                         y_range=ref_s1_y_range,
                         out_file=picture_file_ref_s1,
                         title=title_ref_s1, y_label=y_label_ref_s1,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e,
                         zero_line=False)
        plot_time_series(day_data_x=date_channel, day_data_y=ref_s2_channel,
                         y_range=ref_s2_y_range,
                         out_file=picture_file_ref_s2,
                         title=title_ref_s2, y_label=y_label_ref_s2,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e,
                         zero_line=False)
        plot_time_series(day_data_x=date_channel, day_data_y=amount_channel,
                         y_range=count_y_range,
                         out_file=picture_file_amount,
                         title=title_amount, y_label=y_label_amount,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e,
                         plot_background=False)

        # 孙凌添加,出两张图,限制Y轴坐标的图和不限制Y轴坐标的图,这里是不限制Y轴坐标的图
        picture_name_absolute = 'Time_Series_Dif_{}_{}_{}_{}_NL.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_name_relative = 'Time_Series_PDif_{}_{}_{}_{}_NL.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_name_ref_s1 = 'Time_Series_{}_{}_NL.png'.format(sat_sensor1, channel1)
        picture_name_ref_s2 = 'Time_Series_{}_{}_NL.png'.format(sat_sensor2, channel2)
        picture_name_amount = 'Time_Series_Count_{}_{}_{}_{}_NL.png'.format(
            sat_sensor1, channel1, sat_sensor2, channel2)
        picture_file_absolute = os.path.join(picture_path, picture_name_absolute)
        picture_file_relative = os.path.join(picture_path, picture_name_relative)
        picture_file_ref_s1 = os.path.join(picture_path, picture_name_ref_s1)
        picture_file_ref_s2 = os.path.join(picture_path, picture_name_ref_s2)
        picture_file_amount = os.path.join(picture_path, picture_name_amount)
        plot_time_series(day_data_x=date_channel, day_data_y=absolute_bias,
                         out_file=picture_file_absolute,
                         title=title_series, y_label=y_label_series_absolute,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e, )
        plot_time_series(day_data_x=date_channel, day_data_y=relative_bias,
                         out_file=picture_file_relative,
                         title=title_series, y_label=y_label_series_relative,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e, )
        plot_time_series(day_data_x=date_channel, day_data_y=ref_s1_channel,
                         out_file=picture_file_ref_s1,
                         title=title_ref_s1, y_label=y_label_ref_s1,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e, )
        plot_time_series(day_data_x=date_channel, day_data_y=ref_s2_channel,
                         out_file=picture_file_ref_s2,
                         title=title_ref_s2, y_label=y_label_ref_s2,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e, )
        plot_time_series(day_data_x=date_channel, day_data_y=amount_channel,
                         out_file=picture_file_amount,
                         title=title_amount, y_label=y_label_amount,
                         ymd_start=yc.info_ymd_s, ymd_end=yc.info_ymd_e,
                         plot_background=False)

    # 输出HDF5
    hdf5_name = '{}_{}_Dif_PDif_Daily.HDF'.format(sat_sensor1, sat_sensor2)
    out_path = yc.path_opath
    out_file_hdf5 = os.path.join(out_path, hdf5_name)
    make_sure_path_exists(out_path)
    write_hdf5(out_file_hdf5, result)

    keys = amount_all.keys()
    keys.sort()
    for channel in keys:
        print 'CHANNEL: {} POINT: {}'.format(channel, np.sum(amount_all[channel]))
    print '-' * 100

    # 输出月的HDF5
    # 加载数据
    data_absolute = dict()
    data_relative = dict()
    date = dict()
    ref_s1_all = dict()
    ref_s2_all = dict()
    amount_all = dict()
    date_start = ymd2date(yc.info_ymd_s)
    date_end = ymd2date(yc.info_ymd_e)

    result = dict()
    while date_start <= date_end:
        ymd_now = date_start.strftime('%Y%m')
        in_files = get_one_day_files(all_files=all_files, ymd=ymd_now, ext='.h5',
                                     pattern_ymd=r'.*_(\d{6})')
        cross_data = ReadCrossDataL2()
        cross_data.read_cross_data(in_files=in_files)

        # 循环通道数据
        for channel in cross_data.data:

            if channel not in data_absolute:
                data_absolute[channel] = list()
            if channel not in data_relative:
                data_relative[channel] = list()
            if channel not in date:
                date[channel] = list()
            if channel not in ref_s1_all:
                ref_s1_all[channel] = list()
            if channel not in ref_s2_all:
                ref_s2_all[channel] = list()
            if channel not in amount_all:
                amount_all[channel] = list()
            if channel not in result:
                result[channel] = dict()

            ref_s1 = cross_data.data[channel]['MERSI_FovMean']
            if len(ref_s1) == 0:
                print '{} {} : Dont have enough point, is 0'.format(ymd_now, channel)
                continue
            ref_s2 = cross_data.data[channel]['MODIS_FovMean']

            # 过滤 3 倍std之外的点
            mean_ref_s1 = np.nanmean(ref_s1)
            std_ref_s1 = np.nanstd(ref_s1)
            min_ref_s1 = mean_ref_s1 - 3 * std_ref_s1
            max_ref_s1 = mean_ref_s1 + 3 * std_ref_s1
            idx = np.logical_and(ref_s1 >= min_ref_s1, ref_s1 <= max_ref_s1)
            ref_s1 = ref_s1[idx]
            ref_s2 = ref_s2[idx]

            # 计算相对偏差和绝对偏差
            bias = Bias()
            absolute_bias = bias.absolute_deviation(ref_s1, ref_s2)
            relative_bias = bias.relative_deviation(ref_s1, ref_s2)
            data_absolute[channel].append(np.mean(absolute_bias))
            data_relative[channel].append(np.mean(relative_bias))
            date[channel].append(date_start)

            mean_absolute = np.nanmean(absolute_bias)
            std_absolute = np.nanstd(absolute_bias)
            amount_absolute = len(absolute_bias)
            median_absolute = np.nanmedian(absolute_bias)
            rms_absolute = rms(absolute_bias)

            mean_relative = np.nanmean(relative_bias)
            std_relative = np.nanstd(relative_bias)
            amount_relative = len(relative_bias)
            median_relative = np.nanmedian(relative_bias)
            rms_relative = rms(relative_bias)

            mean_ref_s1 = np.nanmean(ref_s1)
            std_ref_s1 = np.nanstd(ref_s1)
            amount_ref_s1 = len(ref_s1)
            median_ref_s1 = np.nanmedian(ref_s1)
            rms_ref_s1 = rms(ref_s1)
            ref_s1_all[channel].append(mean_ref_s1)

            mean_ref_s2 = np.nanmean(ref_s2)
            std_ref_s2 = np.nanstd(ref_s2)
            amount_ref_s2 = len(ref_s2)
            median_ref_s2 = np.nanmedian(ref_s2)
            rms_ref_s2 = rms(ref_s2)
            ref_s2_all[channel].append(mean_ref_s2)
            amount_all[channel].append(amount_ref_s1)

            fix_point = sc.plot_scatter_fix_ref
            f025_absolute, f025_relative = get_dif_pdif(ref_s1, ref_s2, fix_point)
            result_names = ['Dif_mean', 'Dif_std', 'Dif_median', 'Dif_count',
                            'Dif_rms', 'Dif_025',
                            'PDif_mean', 'PDif_std', 'PDif_median', 'PDif_count',
                            'PDif_rms', 'PDif_025',
                            '{}_MODIS_mean'.format(channel), '{}_MODIS_std'.format(channel), '{}_MODIS_median'.format(channel), '{}_MODIS_count'.format(channel),
                            '{}_MODIS_rms'.format(channel),
                            '{}_MERSI_mean'.format(channel), '{}_MERSI_std'.format(channel), '{}_MERSI_median'.format(channel), '{}_MERSI_count'.format(channel),
                            '{}_MERSI_rms'.format(channel),
                            'Date']
            datas = [mean_absolute, std_absolute, median_absolute, amount_absolute,
                     rms_absolute, f025_absolute,
                     mean_relative, std_relative, median_relative, amount_relative,
                     rms_relative, f025_relative,
                     mean_ref_s1, std_ref_s1, median_ref_s1, amount_ref_s1,
                     rms_ref_s1,
                     mean_ref_s2, std_ref_s2, median_ref_s2, amount_ref_s2,
                     rms_ref_s2,
                     ymd_now]
            for result_name, data in zip(result_names, datas):
                if result_name not in result[channel]:
                    result[channel][result_name] = list()
                else:
                    result[channel][result_name].append(data)

        date_start = date_start + relativedelta(months=1)

    # 输出HDF5
    hdf5_name = '{}_{}_Dif_PDif_Monthly.HDF'.format(sat_sensor1, sat_sensor2)
    out_path = yc.path_opath
    out_file_hdf5 = os.path.join(out_path, hdf5_name)
    make_sure_path_exists(out_path)
    write_hdf5(out_file_hdf5, result)

    print '-' * 100
예제 #7
0
def main(sat_sensor, in_file):
    """
    绘制 L3 产品的全球投影图。
    :param sat_sensor: 卫星+传感器
    :param in_file: HDF5 文件
    :return: 
    """
    # ######################## 初始化 ###########################
    # 获取程序所在位置,拼接配置文件
    app = InitApp(sat_sensor)
    if app.error:
        print "Load config file error."
        return

    gc = app.global_config
    sc = app.sat_config

    log = LogServer(gc.path_out_log)

    # 加载全局配置信息

    # 加载程序配置信息

    # 加载卫星配置信息
    colorbar_range = sc.plt_combine_colorbar_range
    area_range = sc.plt_combine_area_range
    plot_global = sc.plt_combine_plot_global
    plot_china = sc.plt_combine_plot_china
    log10_ticks = sc.plt_combine_log10_ticks
    log10_tick_labels = sc.plt_combine_log10_tick_label
    log10_set = sc.plt_combine_log10_set
    # ######################## 开始处理 ###########################
    print "-" * 100
    print "Start plot combine map."

    if not os.path.isfile(in_file):
        log.error("File is not exist: {}".format(in_file))
        return

    print "<<< {}".format(in_file)

    sat, sensor = sat_sensor.split("+")
    for legend in colorbar_range:
        print "*" * 100
        dataset_name, name, vmax, vmin, colorbar_label = legend
        vmax = float(vmax)  # color bar 范围 最大值
        vmin = float(vmin)  # color bar 范围 最小值

        dir_path = os.path.dirname(in_file)
        ymd = _get_ymd(in_file)
        kind = _get_kind(in_file)

        ymd_date = datetime.strptime(ymd, "%Y%m%d")

        if dataset_name in log10_set:
            _ticks = log10_ticks
            _tick_labels = log10_tick_labels
            if dataset_name == "Ocean_TSM":
                _ticks.append(2.00)
                _tick_labels.append("100")
            if dataset_name == "Ocean_YS443":
                _ticks = _ticks[:-3]
                _tick_labels = _tick_labels[:-3]
        else:
            _ticks = None
            _tick_labels = None

        png = "{}_{}_{}_{}.png".format(sat_sensor,
                                       dataset_name.replace("Aod", "AOD"), ymd,
                                       kind)
        title = _get_title(sat, sensor, name, kind, ymd_date)

        plot_map = {
            "title": title,
            "legend": {
                "vmax": vmax,
                "vmin": vmin,
                "label": colorbar_label,
                "ticks": _ticks,
                "tick_labels": _tick_labels
            },
            "area_range": area_range,
            "lat_lon_line": {
                "delat": 30,
                "delon": 30,
            },
        }

        # 画全球范围
        if plot_global.lower() == "on":
            pic_name = os.path.join(dir_path, "picture_global", png)
            # 如果输出文件已经存在,跳过
            if os.path.isfile(pic_name):
                print "File is already exist, skip it: {}".format(pic_name)
            else:
                if dataset_name in log10_set:
                    plot_map["log10"] = True

                with time_block("Draw combine time:", switch=TIME_TEST):
                    plot_map_global = PlotMapL3(in_file,
                                                dataset_name,
                                                pic_name,
                                                map_=plot_map)
                    plot_map_global.draw_combine()

                if not plot_map_global.error:
                    print ">>> {}".format(plot_map_global.out_file)
                else:
                    print "Error: Plot global picture error: {}".format(
                        in_file)

        # 单画中国区域
        if plot_china.lower() == "on":
            pic_name = os.path.join(dir_path, "picture_china", png)
            # 如果输出文件已经存在,跳过
            if os.path.isfile(pic_name):
                print "File is already exist, skip it: {}".format(pic_name)
            else:
                area_range_china = {
                    "lat_s": "56",
                    "lat_n": "2",
                    "lon_w": "65",
                    "lon_e": "150",
                }
                lat_lon_line = {
                    "delat": 10,
                    "delon": 10,
                }
                plot_map["area_range"] = area_range_china
                plot_map["lat_lon_line"] = lat_lon_line

                with time_block("Draw combine time:", switch=TIME_TEST):
                    plot_map_china = PlotMapL3(in_file,
                                               dataset_name,
                                               pic_name,
                                               map_=plot_map)
                    plot_map_china.draw_combine()

                if not plot_map_china.error:
                    print ">>> {}".format(plot_map_china.out_file)
                else:
                    print "Error: Plot china picture error: {}".format(in_file)

    print '-' * 100
예제 #8
0
MAIL_PAWD = inCfg['MAIL']['MAIL_PAWD']

use_proxy = inCfg['PROXY']['use_proxy']
PROXY_HOST = inCfg['PROXY']['host']
PROXY_PORT = int(inCfg['PROXY']['port'])

PROXY_USER = inCfg['PROXY']['user']
PROXY_PAWD = inCfg['PROXY']['pawd']

NUM = inCfg['ORDER'].keys()

# 启动socket服务,防止多实例运行
port = 9850
sserver = SocketServer()
if sserver.createSocket(port) == False:
    Log.error(u'----已经有一个实例在实行')
    sys.exit(-1)

# 判断系统类型
if 'nt' in os.name:
    OSTYPE = 'windows'
elif 'posix' in os.name:
    OSTYPE = 'linux'
else:
    Log.info('不识别的系统类型')
    sys.exit(-1)

# 设置代理信息,如果服务器无法连接外网需要设置代理连接
if 'ON' in use_proxy:
    socks.set_default_proxy(socks.SOCKS5, PROXY_HOST, PROXY_PORT, True,
                            PROXY_USER, PROXY_PAWD)
예제 #9
0
def main(sat_sensor, in_file):
    """
    使用矫正系数对 MERSI L1 的产品进行定标预处理
    :param sat_sensor: (str) 卫星对
    :param in_file: (str) 输入文件
    :return:
    """
    # ######################## 初始化 ###########################
    # 获取程序所在位置,拼接配置文件
    app = InitApp(sat_sensor)
    if app.error:
        print "Load config file error."
        return

    gc = app.global_config
    sc = app.sat_config

    log = LogServer(gc.path_out_log)

    # 全局配置接口
    obc_path = gc.path_in_obc
    geo_path = gc.path_in_geo
    coeff_path = gc.path_in_coeff
    out_path = gc.path_mid_calibrate
    # 程序配置接口

    # 卫星配置接口
    launch_date = sc.launch_date
    probe_count = sc.calibrate_probe_count
    probe = sc.calibrate_probe
    slide_step = sc.calibrate_slide_step
    plot = sc.calibrate_plot

    # ######################## 开始处理 ###########################
    print '-' * 100
    print 'Start calibration'

    # 不同的卫星对使用不同的处理类和流程
    if "fy3b" in sat_sensor.lower() and 'mersi' in sat_sensor.lower():
        # 获取 M1000 文件和对应 OBC 文件
        l1_1000m = in_file
        obc_1000m = _get_obc_file(l1_1000m, obc_path)
        if not os.path.isfile(l1_1000m):
            log.error("File is not exist: {}".format(l1_1000m))
            return
        elif not os.path.isfile(obc_1000m):
            log.error("File is not exist: {}".format(obc_1000m))
            return
        else:
            print "<<< {}".format(l1_1000m)
            print "<<< {}".format(obc_1000m)

        ymd = _get_ymd(l1_1000m)

        # 获取 coefficient 水色波段系统定标系数, 2013年以前和2013年以后不同
        coeff_file = os.path.join(coeff_path, '{}.txt'.format(ymd[0:4]))
        if not os.path.isfile(coeff_file):
            log.error("File is not exist: {}".format(coeff_file))
            return
        else:
            print "<<< {}".format(coeff_file)

        # 获取输出文件
        out_path = pb_io.path_replace_ymd(out_path, ymd)
        _name = os.path.basename(l1_1000m)
        out_file = os.path.join(out_path, _name)

        # 如果输出文件已经存在,跳过预处理
        if os.path.isfile(out_file):
            print "File is already exist, skip it: {}".format(out_file)
            return

        # 初始化一个预处理实例
        calibrate = CalibrateFY3B(l1_1000m=l1_1000m,
                                  obc_1000m=obc_1000m,
                                  coeff_file=coeff_file,
                                  out_file=out_file,
                                  launch_date=launch_date)

        # 对 OBC 文件进行 SV 提取
        calibrate.obc_sv_extract_fy3b(probe=probe,
                                      probe_count=probe_count,
                                      slide_step=slide_step)

        # 重新定标 L1 数据
        calibrate.calibrate()

        # 将新数据写入 HDF5 文件
        calibrate.write()

        if not calibrate.error:
            print ">>> {}".format(calibrate.out_file)

            # 对原数据和处理后的数据各出一张真彩图
            if plot == "on":
                if not calibrate.error:
                    picture_suffix = "650_565_490"
                    file_name = os.path.splitext(out_file)[0]
                    out_pic_old = "{}_{}_old.{}".format(
                        file_name, picture_suffix, "png")
                    out_pic_new = "{}_{}_new.{}".format(
                        file_name, picture_suffix, "png")
                    # 如果输出文件已经存在,跳过
                    if os.path.isfile(out_pic_old):
                        print "File is already exist, skip it: {}".format(
                            out_pic_old)
                        return
                    else:
                        _plot_rgb_fy3b_old(in_file, out_pic_old)
                    if os.path.isfile(out_pic_new):
                        print "File is already exist, skip it: {}".format(
                            out_pic_new)
                        return
                    else:
                        _plot_rgb_fy3b_new(out_file, out_pic_new)
        else:
            print "Error: Calibrate error".format(in_file)

    elif "fy3d" in sat_sensor.lower() and 'mersi' in sat_sensor.lower():
        # 获取 M1000 文件和对应 GEO 文件
        l1_1000m = in_file
        geo_1000m = _get_geo_file(l1_1000m, geo_path)
        if not os.path.isfile(l1_1000m):
            log.error("File is not exist: {}".format(l1_1000m))
            return
        elif not os.path.isfile(geo_1000m):
            log.error("File is not exist: {}".format(geo_1000m))
            return
        else:
            print "<<< {}".format(l1_1000m)
            print "<<< {}".format(geo_1000m)

        ymd = _get_ymd(l1_1000m)

        # 获取 coefficient 定标系数
        coeff_file = os.path.join(coeff_path, '{}.txt'.format(ymd[0:4]))
        if not os.path.isfile(coeff_file):
            log.error("File is not exist: {}".format(coeff_file))
            coeff_file = None
        else:
            print "<<< {}".format(coeff_file)

        # 获取输出文件
        out_path = pb_io.path_replace_ymd(out_path, ymd)
        _name = os.path.basename(l1_1000m)
        out_file = os.path.join(out_path, _name)

        # 如果输出文件已经存在,跳过预处理
        if os.path.isfile(out_file):
            print "File is already exist, skip it: {}".format(out_file)
            return

        # 初始化一个预处理实例
        calibrate = CalibrateFY3D()

        # 重新定标 L1 数据
        calibrate.calibrate(l1_1000m, geo_1000m, coeff_file)

        # 将新数据写入 HDF5 文件
        calibrate.write(out_file)

        if not calibrate.error:
            print ">>> {}".format(out_file)

            if plot == "on":
                if not calibrate.error:
                    picture_suffix = "670_555_490"
                    file_name = os.path.splitext(out_file)[0]
                    out_pic_old = "{}_{}_old.{}".format(
                        file_name, picture_suffix, "png")
                    out_pic_new = "{}_{}_new.{}".format(
                        file_name, picture_suffix, "png")
                    # 如果输出文件已经存在,跳过
                    if os.path.isfile(out_pic_old):
                        print "File is already exist, skip it: {}".format(
                            out_pic_old)
                        return
                    else:
                        pass
                        # _plot_rgb_fy3b_old(in_file, out_pic_old)
                    if os.path.isfile(out_pic_new):
                        print "File is already exist, skip it: {}".format(
                            out_pic_new)
                        return
                    else:
                        print out_file
                        _plot_rgb_fy3d_new(out_file, out_pic_new)
        else:
            print "***Error***: Calibrate error".format(in_file)
    else:
        print "***Error***: Don`t handle this sat and sensor: {}".format(
            sat_sensor)
        return

    print '-' * 100
예제 #10
0
def main(sat_sensor, in_file):
    """
    对L2数据进行投影,记录投影后的位置信息和数据信息
    :param sat_sensor: 卫星+传感器
    :param in_file: HDF5 文件
    :return: 
    """
    # ######################## 初始化 ###########################
    # 获取程序所在位置,拼接配置文件
    app = InitApp(sat_sensor)
    if app.error:
        print "Load config file error."
        return

    gc = app.global_config
    sc = app.sat_config

    log = LogServer(gc.path_out_log)

    # 加载全局配置信息
    out_path = gc.path_mid_projection

    # 加载程序配置信息

    # 加载卫星配置信息
    res = sc.project_res
    half_res = deg2meter(res) / 2.
    cmd = sc.project_cmd % (half_res, half_res)
    row = sc.project_row
    col = sc.project_col
    mesh_size = sc.project_mesh_size

    # ######################## 开始处理 ###########################
    print "-" * 100
    print "Start projection."

    if not os.path.isfile(in_file):
        log.error("File is not exist: {}".format(in_file))
        return

    print "<<< {}".format(in_file)

    with time_block("One project time:", switch=TIME_TEST):
        # 生成输出文件的文件名
        ymd = _get_ymd(in_file)
        hm = _get_hm(in_file)
        sat, sensor = sat_sensor.split('+')
        out_name = "{}_{}_ORBT_L2_OCC_MLT_NUL_{}_{}_{}.HDF".format(
            sat, sensor, ymd, hm, mesh_size.upper())
        out_path = pb_io.path_replace_ymd(out_path, ymd)
        out_file = os.path.join(out_path, out_name)

        # 如果输出文件已经存在,跳过
        if os.path.isfile(out_file):
            print "File is already exist, skip it: {}".format(out_file)
            return

        # 开始创建投影查找表
        projection = Projection(cmd=cmd, row=row, col=col, res=res)
        projection.project(in_file, out_file)

        if not projection.error:
            print ">>> {}".format(out_file)
        else:
            print "Error: Projection error: {}".format(in_file)

        print "-" * 100