def main(): digits = mnist() mynvb = nvb() x = center_matrix_SVD(digits.train_Images) mynvb.fit(digits.train_Images,digits.train_Labels) labels = mynvb.predict(digits.test_Images) errors_Full, error_Full_index = class_error_rate(labels,digits.test_Labels) mynvb.fit(x.PCA[:,:154],digits.train_Labels) newtest = (digits.test_Images -x.centers)@np.transpose(x.V[:154,:]) labels = mynvb.predict(newtest) errors_154, error_Full_index = class_error_rate(labels,digits.test_Labels) mynvb.fit(digits.train_Images,digits.train_Labels) mynvb.fit(x.PCA[:,:50],digits.train_Labels) newtest = (digits.test_Images -x.centers)@np.transpose(x.V[:50,:]) labels = mynvb.predict(newtest) errors_50, error_Full_index = class_error_rate(labels,digits.test_Labels) mynvb.fit(digits.train_Images,digits.train_Labels) mynvb.fit(x.PCA[:,:70],digits.train_Labels) newtest = (digits.test_Images -x.centers)@np.transpose(x.V[:70,:]) labels = mynvb.predict(newtest) errors_70, error_Full_index = class_error_rate(labels,digits.test_Labels) print(errors_Full) print(errors_154) print(errors_50) print(errors_70) prob3_plots(mynvb,digits,newtest,pc=0) prob3_plots(mynvb,digits,newtest,pc=1) prob3_plots(mynvb,digits,newtest,pc=2) prob3_plots(mynvb,digits,newtest,pc=3)
def main(): digits = mnist() # Creates a class with our mnist images and labels if open('Training SVD Data','rb')._checkReadable() == 0: # Check if file exist create it if it doesn't print("im here") x = center_matrix_SVD(digits.train_Images) # Creates a class with our svd and associated info pickle.dump(x,open('Training SVD Data','wb')) else: x = pickle.load(open('Training SVD Data','rb')) # If we already have the file just load it if 0: test_Images_Center = np.subtract(digits.test_Images,np.repeat(x.centers,digits.test_Images.shape[0],0)) tic() labels = local_kmeans_class(x.PCA[:,:50],digits.train_Labels,[email protected](x.V[:50,:]),10) toc() pickle.dump(labels,open('Loc_kmeans_50_lab','wb')) loc_full = pickle.load(open('Loc_kmeans_Full_lab','rb')) loc_50 = pickle.load(open('Loc_kmeans_50_lab','rb')) labels_Full = pickle.load(open('KNN_Full','rb')) # Have to transpose these because they came out backwards should fix if i use this agian errors_full,ind_full = class_error_rate(np.transpose(loc_full),digits.test_labels) errors_50,ind_50 = class_error_rate(np.transpose(loc_50),digits.test_labels) errors_near,ind_50 = class_error_rate(labels_Full,digits.test_labels) plt.figure() plt.plot(np.arange(10)+1, errors_full, color='Green', marker='o', markersize=10, label='Full') #plots the 82.5% plt.plot(np.arange(10)+1, errors_50, color='Yellow', marker='o', markersize=10, label='82.5%') plt.plot(np.arange(10)+1, errors_near, color='Blue', marker='o', markersize=10, label='kNN') plt.grid(1) # Turns the grid on plt.title('Plot of local KNN Error rates') plt.legend(loc='upper right') # Puts a legend on the plot plt.show()
def main(): digits = mnist() # Creates a class with our mnist images and labels if open('Training SVD Data', 'rb')._checkReadable( ) == 0: # Check if file exist create it if it doesn't print("im here") # Just wanted to check if it was going in here x = center_matrix_SVD( digits.train_Images ) # Creates a class with our svd and associated info pickle.dump(x, open('Training SVD Data', 'wb')) else: x = pickle.load(open('Training SVD Data', 'rb')) # If we already have the file just load it if 0: # if this is zero skip test_Images_Center = np.subtract( digits.test_Images, np.repeat(x.centers, digits.test_Images.shape[0], 0)) tic() myLDA = LDA() # Create a new instance of the LDA class new_train = myLDA.fit_transform( x.PCA[:, :154], digits.train_Labels) # It will fit based on x.PCA new_test = myLDA.transform(test_Images_Center @ np.transpose( x.V[:154, :])) # get my transformed test dataset Knn_labels, nearest = KNN(new_train, digits.train_Labels, new_test, 10) # Run kNN on the new data toc() pickle.dump(Knn_labels, open('FDAKNN_Lables', 'wb')) pickle.dump(nearest, open('FDAKNN_neastest', 'wb')) fda = pickle.load(open('FDAKNN_Lables', 'rb')) labels_Full = pickle.load(open('KNN_Full', 'rb')) labels_50 = pickle.load(open('KNN_50', 'rb')) errors_fda, ind_fda = class_error_rate(fda, digits.test_labels) errors_near, ind_near = class_error_rate(labels_Full, digits.test_labels) errors_50, ind_50 = class_error_rate(labels_50, digits.test_labels) plt.figure() plt.plot(np.arange(10) + 1, errors_fda, color='Green', marker='o', markersize=10, label='fda') #plots the 82.5% plt.plot(np.arange(10) + 1, errors_near, color='Blue', marker='o', markersize=10, label='kNN') plt.plot(np.arange(10) + 1, errors_50, color='Yellow', marker='o', markersize=10, label='kNN 50') plt.grid(1) # Turns the grid on plt.title('Plot of Knn with FDA Error rates') plt.legend(loc='upper right') # Puts a legend on the plot plt.show() print(confusion_matrix(digits.test_labels, labels_Full[5])) print(confusion_matrix(digits.test_labels, fda[5])) print(confusion_matrix(digits.test_labels, labels_50[5])) """
def confusion(digits): myLDA = LDA() x = center_matrix_SVD(digits.train_Images) myLDA.fit(x.PCA[:,:50],digits.train_Labels) newtest = digits.test_Images -x.centers [email protected](x.V[:50,:]) labels = myLDA.predict(newtest) import sklearn.metrics as f print(f.confusion_matrix(digits.test_Labels,labels))
def main(): digits = mnist() # Creates a class with our mnist images and labels if open('Training SVD Data', 'rb')._checkReadable( ) == 0: # Check if file exist create it if it doesn't print("im here") x = center_matrix_SVD( digits.train_Images ) # Creates a class with our svd and associated info pickle.dump(x, open('Training SVD Data', 'wb')) else: x = pickle.load(open('Training SVD Data', 'rb')) # If we already have the file just load it if 0: test_Images_Center = np.subtract( digits.test_Images, np.repeat(x.centers, digits.test_Images.shape[0], 0)) tic() labels = local_kmeans_class( x.PCA[:, :50], digits.train_Labels, test_Images_Center @ np.transpose(x.V[:50, :]), 10) toc() pickle.dump(labels, open('Loc_kmeans_50_lab', 'wb')) loc_full = pickle.load(open('Loc_kmeans_Full_lab', 'rb')) loc_50 = pickle.load(open('Loc_kmeans_50_lab', 'rb')) labels_Full = pickle.load(open('KNN_Full', 'rb')) # Have to transpose these because they came out backwards should fix if i use this agian errors_full, ind_full = class_error_rate(np.transpose(loc_full), digits.test_labels) errors_50, ind_50 = class_error_rate(np.transpose(loc_50), digits.test_labels) errors_near, ind_50 = class_error_rate(labels_Full, digits.test_labels) plt.figure() plt.plot(np.arange(10) + 1, errors_full, color='Green', marker='o', markersize=10, label='Full') #plots the 82.5% plt.plot(np.arange(10) + 1, errors_50, color='Yellow', marker='o', markersize=10, label='82.5%') plt.plot(np.arange(10) + 1, errors_near, color='Blue', marker='o', markersize=10, label='kNN') plt.grid(1) # Turns the grid on plt.title('Plot of local KNN Error rates') plt.legend(loc='upper right') # Puts a legend on the plot plt.show()
def main(): digits = mnist() # Creates a class with our mnist images and labels if open('Training SVD Data','rb')._checkReadable() == 0: # Check if file exist create it if it doesn't print("im here") x = center_matrix_SVD(digits.train_Images) # Creates a class with our svd and associated info pickle.dump(x,open('Training SVD Data','wb')) else: x = pickle.load(open('Training SVD Data','rb')) if 0: # change to 1 if you want to rerun the knn stuff do_KNN(x,digits) KNN_Plots(x,digits)
def main(): digits = mnist() x = center_matrix_SVD(digits.train_Images) errors_154 = doLDA(x,digits,154) pickle.dump(errors_154,open('LDA_154.p','wb')) errors_50 = doLDA(x,digits,50) pickle.dump(errors_50,open('LDA_50.p','wb')) errors_10 = doLDA(x,digits,10) pickle.dump(errors_10,open('LDA_10.p','wb')) errors_60 = doLDA(x,digits,60) pickle.dump(errors_60,open('LDA_60.p','wb')) prob1_plots(digits) put_into_excel(digits)
def main(): # Our main function digits = mnist() # Creates a class with our mnist images and labels if open('Training SVD Data','rb')._checkReadable() == 0: # Check if file exist create it if it doesn't print("im here") x = center_matrix_SVD(digits.train_Images) # Creates a class with our svd and associated info pickle.dump(x,open('Training SVD Data','wb')) else: x = pickle.load(open('Training SVD Data','rb')) if 0: # change 0 to 1 if you want to run this agian merror = mfoldX(x.PCA[:,:],digits.train_Labels,6,10) # Run X-validation and return error rates for the full dataset pickle.dump(merror,open('MFoldErrors','wb')) # Put our error rates in a file merror = mfoldX(x.PCA[:,:154],digits.train_Labels,6,10) # For the 95% dataset pickle.dump(merror,open('MFoldErrors154','wb')) merror = mfoldX(x.PCA[:,:50],digits.train_Labels,6,10) # for the 82.5% dataset pickle.dump(merror,open('MFoldErrors50','wb')) MFold_plots(x) # Makes graphs from our data
def main(): # Our main function digits = mnist() # Creates a class with our mnist images and labels if open("Training SVD Data", "rb")._checkReadable() == 0: # Check if file exist create it if it doesn't print("im here") x = center_matrix_SVD(digits.train_Images) # Creates a class with our svd and associated info pickle.dump(x, open("Training SVD Data", "wb")) else: x = pickle.load(open("Training SVD Data", "rb")) if 0: # change 0 to 1 if you want to run this agian merror = mfoldX( x.PCA[:, :], digits.train_Labels, 6, 10 ) # Run X-validation and return error rates for the full dataset pickle.dump(merror, open("MFoldErrors", "wb")) # Put our error rates in a file merror = mfoldX(x.PCA[:, :154], digits.train_Labels, 6, 10) # For the 95% dataset pickle.dump(merror, open("MFoldErrors154", "wb")) merror = mfoldX(x.PCA[:, :50], digits.train_Labels, 6, 10) # for the 82.5% dataset pickle.dump(merror, open("MFoldErrors50", "wb")) MFold_plots(x) # Makes graphs from our data
def do_LDA2D_KNN(digits,p,q): l,r = LDA2D.iterative2DLDA(digits.train_Images, digits.train_Labels, p, q, 28, 28) new_train = np.zeros((digits.train_Images.shape[0],p*q)) for i in range(digits.train_Images.shape[0]): new_train[i] = (np.transpose(l)@digits.train_Images[i].reshape(28,28)@r).reshape(p*q) new_test = np.zeros((digits.test_Images.shape[0],p*q)) for i in range(digits.test_Images.shape[0]): new_test[i] = (np.transpose(l)@digits.test_Images[i].reshape(28,28)@r).reshape(p*q) myLDA = LDA() x = center_matrix_SVD(new_train) new_new_train = myLDA.fit_transform(new_train-x.centers,digits.train_Labels) new_new_test = myLDA.transform(new_test-x.centers) labels, nearest = KNN(new_new_train,digits.train_Labels,new_new_test,10,'euclidean') pickle.dump(labels, open('LDA2DFDA'+ str(p) + 'x' + str(q) + '_EU.p','wb')) #pickle.dump(nearest, open('NLDA2DFDA'+ str(p) + 'x' + str(q) + '_EU.p','wb')) labels, nearest = KNN(new_new_train,digits.train_Labels,new_new_test,10,'cityblock') pickle.dump(labels, open('LDA2DFDA'+ str(p) + 'x' + str(q) + '_CB.p','wb')) #pickle.dump(nearest, open('NLDA2DFDA'+ str(p) + 'x' + str(q) + '_CB.p','wb')) labels, nearest = KNN(new_new_train,digits.train_Labels,new_new_test,10,'cosine') pickle.dump(labels, open('LDA2DFDA'+ str(p) + 'x' + str(q) + '_CO.p','wb'))
def main(): digits = mnist() # Creates a class with our mnist images and labels if open('Training SVD Data','rb')._checkReadable() == 0: # Check if file exist create it if it doesn't x = center_matrix_SVD(digits.train_Images) # Creates a class with our svd and associated info pickle.dump(x,open('Training SVD Data','wb')) else: x = pickle.load(open('Training SVD Data','rb')) # If we already have the file just load it if 1: # if this is zero skip test_Images_Center = np.subtract(digits.test_Images,np.repeat(x.centers,digits.test_Images.shape[0],0)) tic() myLDA = LDA() # Create a new instance of the LDA class new_train = myLDA.fit_transform(x.PCA[:,:154],digits.train_Labels) # It will fit based on x.PCA new_test = myLDA.transform([email protected](x.V[:154,:])) # get my transformed test dataset Knn_labels = local_kmeans_class(new_train,digits.train_Labels,new_test,10) # Run kNN on the new data toc() pickle.dump(Knn_labels,open('Loc_kmeans_fda_lab','wb')) fda = pickle.load(open('Loc_kmeans_fda_lab','rb')) labels_Full = pickle.load(open('KNN_Full','rb')) loc_full = pickle.load(open('Loc_kmeans_Full_lab','rb')) errors_fda,ind_fda = class_error_rate(np.transpose(fda),digits.test_labels) errors_near,ind_near = class_error_rate(labels_Full,digits.test_labels) errors_full,ind_full = class_error_rate(np.transpose(loc_full),digits.test_labels) labels_50 = pickle.load(open('KNN_50','rb')) errors_50,ind_50 = class_error_rate(labels_50,digits.test_labels) print(errors_full) plt.figure() plt.plot(np.arange(10)+1, errors_fda, color='Green', marker='o', markersize=10, label='fda Kmeans') #plots the 82.5% plt.plot(np.arange(10)+1, errors_near, color='Blue', marker='o', markersize=10, label='kNN') plt.plot(np.arange(10)+1, errors_full, color='Yellow', marker='o', markersize=10, label='Full Kmeans') plt.plot(np.arange(10)+1, errors_50, color='Red', marker='o', markersize=10, label='kNN 50') axes = plt.gca() axes.set_ylim([0.015,0.12]) plt.grid(1) # Turns the grid on plt.title('Plot of Local Kmeans with FDA Error rates') plt.legend(loc='upper right') # Puts a legend on the plot plt.show() project_back(x,digits)
def main(): digits = mnist() # Creates a class with our mnist images and labels if open('Training SVD Data','rb')._checkReadable() == 0: # Check if file exist create it if it doesn't print("im here") # Just wanted to check if it was going in here x = center_matrix_SVD(digits.train_Images) # Creates a class with our svd and associated info pickle.dump(x,open('Training SVD Data','wb')) else: x = pickle.load(open('Training SVD Data','rb')) # If we already have the file just load it if 0: # if this is zero skip test_Images_Center = np.subtract(digits.test_Images,np.repeat(x.centers,digits.test_Images.shape[0],0)) tic() myLDA = LDA() # Create a new instance of the LDA class new_train = myLDA.fit_transform(x.PCA[:,:154],digits.train_Labels) # It will fit based on x.PCA new_test = myLDA.transform([email protected](x.V[:154,:])) # get my transformed test dataset Knn_labels, nearest = KNN(new_train,digits.train_Labels,new_test,10) # Run kNN on the new data toc() pickle.dump(Knn_labels,open('FDAKNN_Lables','wb')) pickle.dump(nearest,open('FDAKNN_neastest','wb')) fda = pickle.load(open('FDAKNN_Lables','rb')) labels_Full = pickle.load(open('KNN_Full','rb')) labels_50 = pickle.load(open('KNN_50','rb')) errors_fda,ind_fda = class_error_rate(fda,digits.test_labels) errors_near,ind_near = class_error_rate(labels_Full,digits.test_labels) errors_50,ind_50 = class_error_rate(labels_50,digits.test_labels) plt.figure() plt.plot(np.arange(10)+1, errors_fda, color='Green', marker='o', markersize=10, label='fda') #plots the 82.5% plt.plot(np.arange(10)+1, errors_near, color='Blue', marker='o', markersize=10, label='kNN') plt.plot(np.arange(10)+1, errors_50, color='Yellow', marker='o', markersize=10, label='kNN 50') plt.grid(1) # Turns the grid on plt.title('Plot of Knn with FDA Error rates') plt.legend(loc='upper right') # Puts a legend on the plot plt.show() print(confusion_matrix(digits.test_labels,labels_Full[5])) print(confusion_matrix(digits.test_labels,fda[5])) print(confusion_matrix(digits.test_labels,labels_50[5])) """