def build_lstm_model(number_neurons_per_layer, l2_lambda, input_size, number_layers, dropout): test_model = tf_analaysis.nn_model() regularizer = regularizers.l2(l2_lambda) model_structure = [({'units': 10, 'input_shape': (None, input_size), 'return_sequences': True}, 'LSTM')] for layer_idx in range(number_layers): model_structure.append({'units': number_neurons_per_layer, 'activation': tf.nn.relu, 'kernel_regularizer': regularizer}) model_structure.append(({'rate': dropout}, 'dropout')) model_structure.append({'units': 4, 'kernel_regularizer': regularizer}) test_model.build_nn_model(hidden_layer_structure=model_structure) return test_model
def build_fnn_model(number_neurons_per_layer, l2_lambda, input_size, number_layers, dropout): # K.get_session().close() # K.set_session(tf.Session()) test_model = tf_analaysis.nn_model() regularizer = regularizers.l2(l2_lambda) # model_structure = [({'units': input_size, 'input_shape': (input_size), 'activation': tf.nn.relu, 'kernel_regularizer': regularizer}, 'dense')] model_structure = [{'units': input_size, 'activation': tf.nn.relu, 'kernel_regularizer': regularizer, 'input_dim': input_size}] for layer_idx in range(number_layers): model_structure.append( {'units': number_neurons_per_layer, 'activation': tf.nn.relu, 'kernel_regularizer': regularizer}) model_structure.append(({'rate': dropout}, 'dropout')) model_structure.append({'units': 4, 'kernel_regularizer': regularizer}) test_model.build_nn_model(hidden_layer_structure=model_structure) # K.get_session().run(tf.global_variables_initializer()) # test_model.model.fit() return test_model
y_test = pd.Series(y.iloc[i], [y.index[i]]) X_train = X.drop(X.index[i]) y_train = y.drop(y.index[i]) if USE_SIMILARITY: X_train = X_train.append(X_train_censored) y_train = y_train.append(y_train_censored) # shuffle idx = np.random.permutation(X_train.index) X_train = X_train.reindex(idx) y_train = y_train.reindex(idx) algo_name = 'Neural Network' test_model = tf_analaysis.nn_model() regularizer = regularizers.l2(l2_lambda) test_model.build_nn_model(hidden_layer_structure=[ { 'units': n_components, 'activation': tf.nn.relu, 'kernel_regularizer': regularizer }, { 'units': 50, 'activation': tf.nn.relu, 'kernel_regularizer': regularizer }, ({ 'rate': dropput }, 'dropout'), { 'units': 20, 'activation': tf.nn.relu,