예제 #1
0
    os.mkdir(opt.dataset)
if not os.path.exists(os.path.join("{}/train".format(opt.dataset))):
    os.mkdir(os.path.join("{}/train".format(opt.dataset)))
    os.mkdir(os.path.join("{}/train/A".format(opt.dataset)))
    os.mkdir(os.path.join("{}/train/B".format(opt.dataset)))
if not os.path.exists(os.path.join("{}/test".format(opt.dataset))):
    os.mkdir(os.path.join("{}/test".format(opt.dataset)))
    os.mkdir(os.path.join("{}/test/A".format(opt.dataset)))
    os.mkdir(os.path.join("{}/test/B".format(opt.dataset)))

train_set = get_training_set(opt.datasetPath)
train_data_loader = DataLoader(dataset=train_set,
                               num_workers=0,
                               batch_size=1,
                               shuffle=True)
test_set = get_test_set(opt.datasetPath)
testing_data_loader = DataLoader(dataset=test_set,
                                 num_workers=0,
                                 batch_size=1,
                                 shuffle=False)

criterionMSE = nn.MSELoss()
criterionMSE = criterionMSE.cuda()

i = 0
'''
for x in range(10):
    for batch in train_data_loader:
        input, target, input_masked = Variable(batch[0], volatile=True), Variable(batch[1], volatile=True), Variable(
            batch[2], volatile=True)
print(opt)

if opt.cuda and not torch.cuda.is_available():
    raise Exception("No GPU found, please run without --cuda")

cudnn.benchmark = True

torch.manual_seed(opt.seed)
if opt.cuda:
    torch.cuda.manual_seed(opt.seed)

print('===> Loading datasets')
train_set = get_training_set(opt.datasetPath, opt.image_size, opt.masked_size,
                             opt.resize_ratio)
test_set = get_test_set(opt.datasetPath, opt.image_size, opt.masked_size,
                        opt.resize_ratio)
training_data_loader = DataLoader(dataset=train_set,
                                  num_workers=opt.threads,
                                  batch_size=opt.batchSize,
                                  shuffle=True,
                                  pin_memory=True)
testing_data_loader = DataLoader(dataset=test_set,
                                 num_workers=opt.threads,
                                 batch_size=opt.testBatchSize,
                                 shuffle=False)

print('===> Building model')

resume_epoch = 0
if opt.resume_epoch < 0:
    net_g_model_out_path = "checkpoint/{}_{}/netG_model_latest.pth".format(