primhdu_ = plate_[0] PLATEIDs.append(primhdu_.header['PLATEID']) ORMASK.append(plate_[3].data) ANDMASK.append(plate_[2].data) INVAR.append(plate_[1].data) log_wavst.append(primhdu_.header['COEFF0']) MJDs.append(primhdu_.header['MJD']) BinInfos.append(Bin_info_) Flux.append(Flux_) list = fits.open('Superset_DR12Q.fits', memmap=True) #opening file supers = list[1].data # storing BINTABLE extension data print("Restoring Data") Full_Data = storing(PLATEIDs, supers) X, Y, Train_z, Train_mag, And, In, wavst, ID = MLAData(Full_Data, BinInfos, Flux, log_wavst, ANDMASK, INVAR) i = 0 print("Saving Files") while i < len(PLATEIDs): C_Plate = PLATEIDs[i] a1 = X[i] a2 = np.array(Y[i]) if len(a1) == 0 & len(a2) == 0: i = i + 1 else: a3 = And[i] a4 = In[i] a5 = Train_z[i] a6 = ID[i]
Flux_ = plate_[0].data primhdu_ = plate_[0] PLATEIDs.append(primhdu_.header['PLATEID']) ORMASK.append(plate_[3].data) ANDMASK.append(plate_[2].data) INVAR.append(plate_[1].data) log_wavst.append(primhdu_.header['COEFF0']) MJDs.append(primhdu_.header['MJD']) BinInfos.append(Bin_info_) Flux.append(Flux_) list = fits.open('Superset_DR12Q.fits', memmap=True) #opening file supers = list[1].data # storing BINTABLE extension data print("Restoring Data") Full_Data = storing(PLATEIDs, supers) X, Y, Train_z, Train_mag, And, In, wavst, ID, MJ, MatchedPlates = MLAData( Full_Data, BinInfos, Flux, log_wavst, ANDMASK, INVAR, MJDs, PLATEIDs) i = 0 i = 0 print("Counting") RejNoPlate = [] while i < len(MatchedPlates): no = 0 a7 = And[i] RejNo = 0 while no < len(a7): obj_and = a7[no] pixel_count = 0 RejNo = 0 while pixel_count < len(obj_and):
primhdu_ = plate_[0] PLATEIDs.append(primhdu_.header['PLATEID']) ORMASK.append(plate_[3].data) ANDMASK.append(plate_[2].data) INVAR.append(plate_[1].data) log_wavst.append(primhdu_.header['COEFF0']) MJDs.append(primhdu_.header['MJD']) BinInfos.append(Bin_info_) Flux.append(Flux_) list = fits.open('Superset_DR12Q.fits', memmap=True) #opening file supers = list[1].data # storing BINTABLE extension data print("Restoring Data") Full_Data = storing(PLATEIDs, supers) X, Y, Train_z, Train_mag, And, In, wavst, ID = MLAData(Full_Data, BinInfos, Flux, log_wavst, ANDMASK, INVAR) wav_ratio = 10**0.0001 plate_no = 0 all_wav = [] while plate_no < len(wavst): append_count = 0 cent_wav = 10**wavst[plate_no] wavelengths = [] wavelengths.append(cent_wav) current_wav = cent_wav while append_count < (4600 - 1): current_wav = current_wav * wav_ratio wavelengths.append(current_wav) append_count = append_count + 1
Flux_ = plate_[0].data primhdu_ = plate_[0] PLATEIDs.append(primhdu_.header['PLATEID']) ORMASK.append(plate_[3].data) ANDMASK.append(plate_[2].data) INVAR.append(plate_[1].data) log_wavst.append(primhdu_.header['COEFF0']) MJDs.append(primhdu_.header['MJD']) BinInfos.append(Bin_info_) Flux.append(Flux_) list = fits.open('Superset_DR12Q.fits', memmap=True) #opening file supers = list[1].data # storing BINTABLE extension data print("Restoring Data") Full_Data = storing(PLATEIDs, supers) X, Y, Train_z, Train_mag, And, In, wavst, ID, MJ, MatchedPlates = MLAData( Full_Data, BinInfos, Flux, log_wavst, ANDMASK, INVAR, MJDs, PLATEIDs) plate_no = 0 all_Testwav = [] wav_ratio = 10**0.0001 while plate_no < len(X): append_count = 0 cent_wav = 10**wavst[plate_no] wavelengths = [] wavelengths.append(cent_wav) current_wav = cent_wav while append_count < (4600 - 1): current_wav = current_wav * wav_ratio wavelengths.append(current_wav) append_count = append_count + 1 plate_no = plate_no + 1