def prueba(): # create data_frame to input data = DataFrame() # create data_frame to output output = DataFrame() # create normalizer normalizer = Normalizer() data.load_data_set("breast-cancer-wisconsin-data.csv") data.drop_columns_by_name(["id"]) output.data_set = data.cut_column('diagnosis') data = data.data_set data.data_set = normalizer.normalize_data(data) data.join_data(output.data_set) rn = NeuralNetwork() kwargs = {"units": 2, "layers": 5, "activation": "sigmoid"} rn.create_model(kwargs) cv = KFoldCrossValidation(10, "diagnosis") cv.k_fold_validation(data, model=rn) cv.view_report()
def prueba2(): # create data_frame to input input = DataFrame() # create data_frame to output output = DataFrame() # create normalizer normalizer = Normalizer() cv = CategoricalValues() input.load_data_set("Churn_Modelling.csv") # drop innecesary columns in the input input.drop_columns_by_name(["RowNumber", "CustomerId", "Surname"]) output.data_set = input.cut_column('Exited') # normalizer data data = input.data_set input.data_set = normalizer.normalize_data(data) input.join_data(output.data_set) cv = KFoldCrossValidation(10, "Exited") cv.k_fold_validation(input) cv.view_report()
net_group.add_argument( "--funcion-activacion", type=str, default='relu', metavar='', help= 'Define la salida de los nodos en una Red Neuronal para un conjunto de entradas dado' ) normalizer = Normalizer() args = parser.parse_args() output = DataFrame() input = DataFrame() input.load_data_set("breast-cancer-wisconsin-data.csv") output.data_set = input.cut_column('diagnosis') input.drop_columns_by_name(['id']) data = input.data_set input.data_set = normalizer.normalize_data(data) input.join_data(output.data_set) validation = KFoldCrossValidation(10, 'diagnosis') if args.arbol: print("Arbol has been chosen") elif args.red_neuronal: model = NeuralNetwork() model.create_model( kwargs={ "layers": args.numero_capas, "units": args.unidades_por_capa, "activation": args.funcion_activacion
def predict(self, x_data): return self.model.predict(x_data) model = NeuralNetwork() # create data_frame to input input = DataFrame() # create data_frame to output output = DataFrame() # create normalizer normalizer = Normalizer() input.load_data_set("breast-cancer-wisconsin-data.csv") # drop innecesary columns in the input #input.view() input.drop_columns_by_name(["id"]) #input.view() output.data_set = input.cut_column('diagnosis') #input.view() # normalizer data data = input.data_set input.data_set = normalizer.normalize_data(data) #input.join_data(output.data_set) #validation = KFoldCrossValidation(10, 'diagnosis') model.create_model(kwargs={"units": 2, "layers": 5, "activation": "sigmoid"}) print("Input: ", input.data_set) #model.train_model(input.data_set, o utput.data_set) #validation.k_fold_validation(input, model=model)