예제 #1
0
    def test_write_non_distributed_npy(self):
        cls = self.__class__
        rank = cls.comm.getRank()
        nproc = cls.comm.getSize()
        if nproc > 1:
            mvector_filename = 'out_mvector_write_test_' + str(nproc)
        else:
            mvector_filename = 'out_mvector_write_test'

        file_dir = os.path.dirname(__file__)

        filename = 'input.yaml'
        problem = Utils.createAlbanyProblem(file_dir + '/' + filename,
                                            cls.parallelEnv)

        n_cols = 4
        parameter_map = problem.getParameterMap(0)
        mvector = Tpetra.MultiVector(parameter_map, n_cols, dtype="d")

        mvector[0, :] = 1. * (rank + 1)
        mvector[1, :] = -1. * (rank + 1)
        mvector[2, :] = 3.26 * (rank + 1)
        mvector[3, :] = -3.1 * (rank + 1)

        Utils.writeMVector(file_dir + '/' + mvector_filename,
                           mvector,
                           distributedFile=False,
                           useBinary=True)
예제 #2
0
    def test_read_non_distributed_non_scattered_txt(self):
        cls = self.__class__
        rank = cls.comm.getRank()
        nproc = cls.comm.getSize()
        if nproc > 1:
            mvector_filename = 'in_mvector_read_test_' + str(nproc)
        else:
            mvector_filename = 'in_mvector_read_test'

        file_dir = os.path.dirname(__file__)

        filename = 'input.yaml'
        problem = Utils.createAlbanyProblem(file_dir + '/' + filename,
                                            cls.parallelEnv)

        n_cols = 4
        parameter_map = problem.getParameterMap(0)

        mvector = Utils.loadMVector(file_dir + '/' + mvector_filename,
                                    n_cols,
                                    parameter_map,
                                    distributedFile=False,
                                    useBinary=False,
                                    readOnRankZero=False)

        tol = 1e-8
        mvector_target = np.array([1., -1, 3.26, -3.1]) * (rank + 1)
        for i in range(0, n_cols):
            self.assertTrue(np.abs(mvector[i, 0] - mvector_target[i]) < tol)
예제 #3
0
    def test_all(self):
        cls = self.__class__
        rank = cls.comm.getRank()

        file_dir = os.path.dirname(__file__)

        # Create an Albany problem:
        filename = 'input_conductivity_dist_paramT.yaml'
        problem = Utils.createAlbanyProblem(file_dir+'/'+filename, cls.parallelEnv)

        n_vecs = 4
        parameter_map = problem.getParameterMap(0)
        num_elems     = parameter_map.getNodeNumElements()
        
        # generate vectors with random entries
        omega = Tpetra.MultiVector(parameter_map, n_vecs, dtype="d")
        for i in range(n_vecs):
            omega[i,:] = np.random.randn(num_elems)
        
        # call the orthonormalization method
        wpa.orthogTpMVecs(omega, 2)
        
        # check that the vectors are now orthonormal
        tol = 1.e-12
        for i in range(n_vecs):
            for j in range(i+1):
                omegaiTomegaj = Utils.inner(omega[i,:], omega[j,:], cls.comm)
                if rank == 0:
                    if i == j:
                        self.assertTrue(abs(omegaiTomegaj - 1.0) < tol)
                    else:
                        self.assertTrue(abs(omegaiTomegaj-0.0) < tol)
예제 #4
0
def main(parallelEnv):
    comm = Teuchos.DefaultComm.getComm()
    filename = 'input_conductivity_dist_paramT.yaml'
    problem = Utils.createAlbanyProblem(filename, parallelEnv)

    # We can get from the Albany problem the map of a distributed parameter:
    parameter_map = problem.getParameterMap(0)

    # This map can then be used to construct an RCP to a Tpetra::Multivector:
    m_directions = 4
    directions = Tpetra.MultiVector(parameter_map, m_directions, dtype="d")

    # Numpy operations, such as assignments, can then be performed on the local entries:
    directions[0, :] = 1.  # Set all entries of v_0 to   1
    directions[1, :] = -1.  # Set all entries of v_1 to  -1
    directions[2, :] = 3.  # Set all entries of v_2 to   3
    directions[3, :] = -3.  # Set all entries of v_3 to  -3

    # Now that we have an RCP to the directions, we provide it to the Albany problem:
    problem.setDirections(0, directions)

    # Finally, we can solve the problem (which includes applying the Hessian to the directions)
    # and get the Hessian-vector products:
    problem.performSolve()
    hessian = problem.getReducedHessian(0, 0)
예제 #5
0
    def test_all(self):
        cls = self.__class__
        rank = cls.comm.getRank()

        file_dir = os.path.dirname(__file__)

        # Create an Albany problem:
        filename = 'input_conductivity_dist_paramT.yaml'
        problem = Utils.createAlbanyProblem(file_dir+'/'+filename, cls.parallelEnv)

        parameter_map    = problem.getParameterMap(0)
        parameter        = Tpetra.MultiVector(parameter_map, 1, dtype="d")
        num_elems        = parameter_map.getNodeNumElements()
        parameter[0, :]  = 2.0*np.ones(num_elems)
    

        problem.performSolve()
        state_map    = problem.getStateMap()
        state        = Tpetra.MultiVector(state_map, 1, dtype="d")
        state[0, :]  = problem.getState()
        state_ref    = Utils.loadMVector('state_ref', 1, state_map, distributedFile=False, useBinary=False, readOnRankZero=True)
        

        stackedTimer = problem.getStackedTimer()
        setup_time = stackedTimer.accumulatedTime("PyAlbany: Setup Time")
        print("setup_time = " + str(setup_time))
        tol = 1.e-8
        self.assertTrue(np.linalg.norm(state_ref[0, :] - state[0,:]) < tol)
예제 #6
0
def main(parallelEnv):
    filename = 'input_conductivity_dist_paramT.yaml'
    problem = Utils.createAlbanyProblem(filename, parallelEnv)

    # Now that the Albany problem is constructed, we can solve
    # it and evaluate the response:
    problem.performSolve()
    response = problem.getResponse(0)
    print(response)
예제 #7
0
def main(parallelEnv):
    comm = MPI.COMM_WORLD
    myGlobalRank = comm.rank

    # Create an Albany problem:
    filename = "input_dirichletT.yaml"
    parameter = Utils.createParameterList(
        filename, parallelEnv
    )

    problem = Utils.createAlbanyProblem(parameter, parallelEnv)

    parameter_map_0 = problem.getParameterMap(0)
    parameter_0 = Tpetra.Vector(parameter_map_0, dtype="d")

    N = 200
    p_min = -2.
    p_max = 2.

    # Generate N samples randomly chosen in [p_min, p_max]:
    p = np.random.uniform(p_min, p_max, N)
    QoI = np.zeros((N,))

    # Loop over the N samples and evaluate the quantity of interest:
    for i in range(0, N):
        parameter_0[0] = p[i]
        problem.setParameter(0, parameter_0)

        problem.performSolve()

        response = problem.getResponse(0)
        QoI[i] = response.getData()[0]

    if myGlobalRank == 0:
        if printPlot:
            f, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,6))

            ax1.hist(p)
            ax1.set_ylabel('Counts')
            ax1.set_xlabel('Random parameter')

            ax2.scatter(p, QoI)
            ax2.set_ylabel('Quantity of interest')
            ax2.set_xlabel('Random parameter')

            ax3.hist(QoI)
            ax3.set_ylabel('Counts')
            ax3.set_xlabel('Quantity of interest')

            plt.savefig('UQ.jpeg', dpi=800)
            plt.close()
예제 #8
0
def main(parallelEnv):
    comm = parallelEnv.comm
    filename = 'input_conductivity_dist_paramT.yaml'
    problem = Utils.createAlbanyProblem(filename, parallelEnv)
    problem.performSolve()

    # We can solve the problem and extract the sensitivity w.r.t. a parameter:
    sensitivity = problem.getSensitivity(0, 0)

    # In this example, we illustrate how to return values as output without
    # relying on Kokkos-related object; the local data of the vectors are deeply
    # copied to a new numpy array:
    sensitivity_out = np.copy(sensitivity[0, :])
    return sensitivity_out
예제 #9
0
    def test_all(self):
        cls = self.__class__
        rank = cls.comm.getRank()

        file_dir = os.path.dirname(__file__)

        # Create an Albany problem:
        filename = 'input_conductivity_dist_paramT.yaml'
        problem = Utils.createAlbanyProblem(file_dir+'/'+filename, cls.parallelEnv)

        n_directions = 4
        parameter_map = problem.getParameterMap(0)
        directions = Tpetra.MultiVector(parameter_map, n_directions, dtype="d")

        directions[0,:] = 1.
        directions[1,:] = -1.
        directions[2,:] = 3.
        directions[3,:] = -3.

        problem.setDirections(0, directions)

        problem.performSolve()

        response = problem.getResponse(0)
        sensitivity = problem.getSensitivity(0, 0)
        hessian = problem.getReducedHessian(0, 0)

        g_target = 3.23754626955999991e-01
        norm_target = 8.94463776843999921e-03
        h_target = np.array([0.009195356672103817, 0.009195356672103817, 0.027586070971800013, 0.027586070971800013])

        g_data = response.getData()
        norm = Utils.norm(sensitivity.getData(0), cls.comm)

        print("g_target = " + str(g_target))
        print("g_data[0] = " + str(g_data[0]))
        print("norm = " + str(norm))
        print("norm_target = " + str(norm_target))

        hessian_norms = np.zeros((n_directions,))
        for i in range(0,n_directions):
            hessian_norms[i] = Utils.norm(hessian.getData(i), cls.comm)

        tol = 1e-8
        if rank == 0:
            self.assertTrue(np.abs(g_data[0]-g_target) < tol)
            self.assertTrue(np.abs(norm-norm_target) < tol)
            for i in range(0,n_directions):
                self.assertTrue(np.abs(hessian_norms[i]-h_target[i]) < tol)
예제 #10
0
파일: steadyHeat.py 프로젝트: koomie/Albany
    def test_all(self):
        comm = Teuchos.DefaultComm.getComm()
        rank = comm.getRank()

        file_dir = os.path.dirname(__file__)

        # Create an Albany problem:
        filename = 'input_conductivity_dist_paramT.yaml'
        problem = Utils.createAlbanyProblem(file_dir + '/' + filename)

        n_directions = 4
        parameter_map = problem.getParameterMap(0)
        directions = Tpetra.MultiVector(parameter_map, n_directions, dtype="d")

        directions[0, :] = 1.
        directions[1, :] = -1.
        directions[2, :] = 3.
        directions[3, :] = -3.

        problem.setDirections(0, directions)

        problem.performSolve()

        response = problem.getResponse(0)
        sensitivity = problem.getSensitivity(0, 0)
        hessian = problem.getReducedHessian(0, 0)

        g_target = 3.23754626955999991e-01
        norm_target = 8.94463776843999921e-03
        h_target = np.array([
            4.2121719763904516e-05, -4.21216874727712e-05,
            0.00012636506241831498, -0.00012636506241831496
        ])

        g_data = response.getData()
        norm = Utils.norm(sensitivity.getData(0), comm)

        print("g_target = " + str(g_target))
        print("g_data[0] = " + str(g_data[0]))
        print("norm = " + str(norm))
        print("norm_target = " + str(norm_target))

        tol = 1e-8
        if rank == 0:
            self.assertTrue(np.abs(g_data[0] - g_target) < tol)
            self.assertTrue(np.abs(norm - norm_target) < tol)
            for i in range(0, n_directions):
                self.assertTrue(np.abs(hessian[i, 0] - h_target[i]) < tol)
예제 #11
0
    def test_all(self):
        cls = self.__class__
        rank = cls.comm.getRank()

        file_dir = os.path.dirname(__file__)

        # Create an Albany problem:
        filename = "input_dirichlet_mixed_paramsT.yaml"
        parameter = Utils.createParameterList(file_dir + "/" + filename,
                                              cls.parallelEnv)

        parameter.sublist("Discretization").set("1D Elements", 10)
        parameter.sublist("Discretization").set("2D Elements", 10)

        problem = Utils.createAlbanyProblem(parameter, cls.parallelEnv)

        parameter_map_0 = problem.getParameterMap(0)
        para_0_new = Tpetra.Vector(parameter_map_0, dtype="d")

        parameter_map_1 = problem.getParameterMap(1)
        para_1_new = Tpetra.Vector(parameter_map_1, dtype="d")
        para_1_new[:] = 0.333333

        n_values = 5
        para_0_values = np.linspace(-1, 1, n_values)
        responses = np.zeros((n_values, ))

        responses_target = np.array(
            [0.69247527, 0.48990929, 0.35681844, 0.29320271, 0.2990621])
        tol = 1e-8

        for i in range(0, n_values):
            para_0_new[:] = para_0_values[i]
            problem.setParameter(0, para_0_new)

            problem.performSolve()

            response = problem.getResponse(0)
            responses[i] = response.getData()[0]

        print("p = " + str(para_0_values))
        print("QoI = " + str(responses))

        if rank == 0:
            self.assertTrue(
                np.abs(np.amax(responses - responses_target)) < tol)
예제 #12
0
    def test_read_non_distributed_npy(self):
        comm = Teuchos.DefaultComm.getComm()
        rank = comm.getRank()
        nproc = comm.getSize()
        if nproc > 1:
            mvector_filename = 'in_mvector_read_test_' + str(nproc)
        else:
            mvector_filename ='in_mvector_read_test'

        file_dir = os.path.dirname(__file__)

        filename = 'input.yaml'
        problem = Utils.createAlbanyProblem(file_dir+'/'+filename)

        n_cols = 4
        parameter_map = problem.getParameterMap(0)

        mvector = Utils.loadMVector(file_dir+'/'+mvector_filename, n_cols, parameter_map, distributedFile = False)

        tol = 1e-8
        mvector_target = np.array([1., -1, 3.26, -3.1])*(rank+1)
        for i in range(0, n_cols):
            self.assertTrue(np.abs(mvector[i,0]-mvector_target[i]) < tol)
예제 #13
0
    def test_all(self):
        debug = True
        cls = self.__class__
        myGlobalRank = cls.comm.getRank()
        nproc = cls.comm.getSize()

        # Create an Albany problem:

        n_params = 2
        filename = "thermal_steady.yaml"

        parameter = Utils.createParameterList(
            filename, cls.parallelEnv
        )
        problem = Utils.createAlbanyProblem(parameter, cls.parallelEnv)

        # ----------------------------------------------
        #
        #      1. Evaluation of the theta star
        #
        # ----------------------------------------------

        l_min = 0.
        l_max = 2.
        n_l = 3

        l = np.linspace(l_min, l_max, n_l)

        theta_star, I_star, F_star, P_star = ee.evaluateThetaStar(l, problem, n_params)

        # ----------------------------------------------
        #
        #   2. Evaluation of the prefactor using IS
        #
        # ----------------------------------------------

        N_samples = 10

        mean = np.array([1., 1.])
        cov = np.array([[1., 0.], [0., 1.]])

        np.random.seed(41)
        samples = np.random.multivariate_normal(mean, cov, N_samples)

        angle_1 = 0.49999*np.pi
        angle_2 = np.pi - angle_1

        P_IS = ee.importanceSamplingEstimator(mean, cov, theta_star, F_star, P_star, samples, problem)
        P_mixed = ee.mixedImportanceSamplingEstimator(mean, cov, theta_star, F_star, P_star, samples, problem, angle_1, angle_2)

        if myGlobalRank == 0:
            expected_theta_star = np.loadtxt('expected_theta_star_steady_'+str(nproc)+'.txt')
            expected_I_star = np.loadtxt('expected_I_star_steady_'+str(nproc)+'.txt')
            expected_P_star = np.loadtxt('expected_P_star_steady_'+str(nproc)+'.txt')
            expected_F_star = np.loadtxt('expected_F_star_steady_'+str(nproc)+'.txt')
            expected_P_IS = np.loadtxt('expected_P_steady_IS_'+str(nproc)+'.txt')
            expected_P_mixed = np.loadtxt('expected_P_steady_mixed_'+str(nproc)+'.txt')

            tol = 1e-8
            tol_F = 5e-5

            if debug:
                for i in range(0, len(expected_theta_star)):
                    print('i = ' + str(i) + ': theta star: expected value = ' + str(expected_theta_star[i]) + ', computed value = ' + str(theta_star[i]) + ', and diff = ' + str(expected_theta_star[i]-theta_star[i]))
                    print('i = ' + str(i) + ': I star: expected value = ' + str(expected_I_star[i]) + ', computed value = ' + str(I_star[i]) + ', and diff = ' + str(expected_I_star[i]-I_star[i]))
                    print('i = ' + str(i) + ': P star: expected value = ' + str(expected_P_star[i]) + ', computed value = ' + str(P_star[i]) + ', and diff = ' + str(expected_P_star[i]-P_star[i]))
                    print('i = ' + str(i) + ': F star: expected value = ' + str(expected_F_star[i]) + ', computed value = ' + str(F_star[i]) + ', and diff = ' + str(expected_F_star[i]-F_star[i]))
                    print('i = ' + str(i) + ': P IS: expected value = ' + str(expected_P_IS[i]) + ', computed value = ' + str(P_IS[i]) + ', and diff = ' + str(expected_P_IS[i]-P_IS[i]))
                    print('i = ' + str(i) + ': P mixed: expected value = ' + str(expected_P_mixed[i]) + ', computed value = ' + str(P_mixed[i]) + ', and diff = ' + str(expected_P_mixed[i]-P_mixed[i]))

            self.assertTrue(np.amax(np.abs(expected_theta_star - theta_star)) < tol)
            self.assertTrue(np.amax(np.abs(expected_I_star - I_star)) < tol)
            self.assertTrue(np.amax(np.abs(expected_P_star - P_star)) < tol)
            self.assertTrue(np.amax(np.abs(expected_F_star - F_star)) < tol_F)
            self.assertTrue(np.amax(np.abs(expected_P_IS - P_IS)) < tol)
            self.assertTrue(np.amax(np.abs(expected_P_mixed - P_mixed)) < tol)
예제 #14
0
    def test_all(self):
        cls = self.__class__
        rank = cls.comm.getRank()

        file_dir = os.path.dirname(__file__)

        # Create an Albany problem:
        filename = "input_dirichlet_mixed_paramsT.yaml"
        parameter = Utils.createParameterList(
            file_dir + "/" + filename, cls.parallelEnv
        )

        parameter.sublist("Discretization").set("1D Elements", 10)
        parameter.sublist("Discretization").set("2D Elements", 10)

        problem = Utils.createAlbanyProblem(parameter, cls.parallelEnv)

        g_target_before = 0.35681844
        g_target_after = 0.17388298
        g_target_2 = 0.19570272
        p_0_target = 0.39886689
        p_1_norm_target = 5.37319376038225
        tol = 1e-8

        problem.performSolve()

        response_before_analysis = problem.getResponse(0)

        problem.performAnalysis()

        para_0 = problem.getParameter(0)
        para_1 = problem.getParameter(1)

        print(para_0.getData())
        print(para_1.getData())

        para_1_norm = Utils.norm(para_1.getData(), cls.comm)
        print(para_1_norm)

        if rank == 0:
            self.assertTrue(np.abs(para_0[0] - p_0_target) < tol)
            self.assertTrue(np.abs(para_1_norm - p_1_norm_target) < tol)

        problem.performSolve()

        response_after_analysis = problem.getResponse(0)

        print("Response before analysis " + str(response_before_analysis.getData()))
        print("Response after analysis " + str(response_after_analysis.getData()))
        if rank == 0:
            self.assertTrue(np.abs(response_before_analysis[0] - g_target_before) < tol)
            self.assertTrue(np.abs(response_after_analysis[0] - g_target_after) < tol)

        parameter_map_0 = problem.getParameterMap(0)
        para_0_new = Tpetra.Vector(parameter_map_0, dtype="d")
        para_0_new[:] = 0.0
        problem.setParameter(0, para_0_new)

        problem.performSolve()

        response = problem.getResponse(0)
        print("Response after setParameter " + str(response.getData()))
        if rank == 0:
            self.assertTrue(np.abs(response[0] - g_target_2) < tol)
예제 #15
0
def main(parallelEnv):
    # This example illustrates how PyAlbany can be used to compute
    # reduced Hessian-vector products w.r.t to the basal friction.

    comm = parallelEnv.comm
    rank = comm.getRank()
    nprocs = comm.getSize()

    file_dir = os.path.dirname(__file__)

    filename = 'input_fo_gis_analysis_beta_smbT.yaml'

    parameter_index = 0
    response_index = 0

    timers = Utils.createTimers([
        "PyAlbany: Create Albany Problem",
        "PyAlbany: Read multivector directions", "PyAlbany: Set directions",
        "PyAlbany: Perform Solve", "PyAlbany: Get Reduced Hessian",
        "PyAlbany: Write Reduced Hessian", "PyAlbany: Total"
    ])

    timers[6].start()
    timers[0].start()
    problem = Utils.createAlbanyProblem(filename, parallelEnv)
    timers[0].stop()

    timers[1].start()
    n_directions = 4
    parameter_map = problem.getParameterMap(0)
    directions = Utils.loadMVector('random_directions',
                                   n_directions,
                                   parameter_map,
                                   distributedFile=False,
                                   useBinary=True)
    timers[1].stop()

    timers[2].start()
    problem.setDirections(parameter_index, directions)
    timers[2].stop()

    timers[3].start()
    problem.performSolve()
    timers[3].stop()

    timers[4].start()
    hessian = problem.getReducedHessian(response_index, parameter_index)
    timers[4].stop()

    timers[5].start()
    Utils.writeMVector("hessian_nprocs_" + str(nprocs),
                       hessian,
                       distributedFile=True,
                       useBinary=False)
    Utils.writeMVector("hessian_all_nprocs_" + str(nprocs),
                       hessian,
                       distributedFile=False,
                       useBinary=False)
    timers[5].stop()

    print(hessian[0, 0])
    print(hessian[1, 0])
    print(hessian[2, 0])
    print(hessian[3, 0])

    timers[6].stop()

    Utils.printTimers(timers, "timers_nprocs_" + str(nprocs) + ".txt")
예제 #16
0
def main(parallelEnv):
    comm = MPI.COMM_WORLD
    nMaxProcs = comm.Get_size()
    myGlobalRank = comm.rank

    timerNames = [
        "PyAlbany: Create Albany Problem", "PyAlbany: Set directions",
        "PyAlbany: Perform Solve", "PyAlbany: Total"
    ]

    nTimers = len(timerNames)

    # number of times that the test is repeated for a fixed
    # number of MPI processes
    N = 10

    timers_sec = np.zeros((nMaxProcs, nTimers, N))
    mean_timers_sec = np.zeros((nMaxProcs, nTimers))

    speedUp = np.zeros((nMaxProcs, nTimers))

    for nProcs in range(1, nMaxProcs + 1):
        newGroup = comm.group.Incl(np.arange(0, nProcs))
        newComm = comm.Create_group(newGroup)

        if myGlobalRank < nProcs:
            parallelEnv.comm = Teuchos.MpiComm(newComm)

            for i_test in range(0, N):
                timers = Utils.createTimers(timerNames)
                timers[3].start()
                timers[0].start()

                filename = 'input_conductivity_dist_paramT.yaml'
                problem = Utils.createAlbanyProblem(filename, parallelEnv)
                timers[0].stop()

                timers[1].start()
                n_directions = 4
                parameter_map = problem.getParameterMap(0)
                directions = Tpetra.MultiVector(parameter_map,
                                                n_directions,
                                                dtype="d")

                directions[0, :] = 1.
                directions[1, :] = -1.
                directions[2, :] = 3.
                directions[3, :] = -3.

                problem.setDirections(0, directions)
                timers[1].stop()

                timers[2].start()
                problem.performSolve()
                timers[2].stop()
                timers[3].stop()

                if myGlobalRank == 0:
                    for j in range(0, nTimers):
                        timers_sec[nProcs - 1, j,
                                   i_test] = timers[j].totalElapsedTime()

    if myGlobalRank == 0:
        for i in range(0, nMaxProcs):
            for j in range(0, nTimers):
                mean_timers_sec[i, j] = np.mean(timers_sec[i, j, :])
            speedUp[i, :] = mean_timers_sec[0, :] / (mean_timers_sec[i, :])

        print('timers')
        print(mean_timers_sec)

        print('speed up')
        print(speedUp)
        if printPlot:
            fig = plt.figure(figsize=(10, 6))
            plt.plot(np.arange(1, nMaxProcs + 1), np.arange(1, nMaxProcs + 1),
                     '--')
            for j in range(0, nTimers):
                plt.plot(np.arange(1, nMaxProcs + 1),
                         speedUp[:, j],
                         'o-',
                         label=timerNames[j])
            plt.ylabel('speed up')
            plt.xlabel('number of MPI processes')
            plt.grid(True)
            plt.legend()
            plt.savefig('speedup.jpeg', dpi=800)
            plt.close()
예제 #17
0
    def test_all(self):
        debug = True
        cls = self.__class__
        myGlobalRank = cls.comm.getRank()
        nproc = cls.comm.getSize()

        # Create an Albany problem:

        n_params = 2
        filename = "thermal_steady_hessian.yaml"

        parameter = Utils.createParameterList(
            filename, cls.parallelEnv
        )
        problem = Utils.createAlbanyProblem(parameter, cls.parallelEnv)

        # ----------------------------------------------
        #
        #      1. Evaluation of the theta star
        #
        # ----------------------------------------------

        l_min = 1.
        l_max = 2.
        n_l = 4

        p = 0.25

        l = l_min + np.power(np.linspace(0.0, 1.0, n_l), p) * (l_max-l_min)

        theta_star, I_star, F_star, P_star = ee.evaluateThetaStar(l, problem, n_params)

        # ----------------------------------------------
        #
        #   2. Evaluation of the prefactor using SO
        #
        # ----------------------------------------------

        mean = np.array([1., 1.])
        cov = np.array([[1., 0.], [0., 1.]])
        
        P_SO = ee.secondOrderEstimator(mean, cov, l, theta_star, I_star, F_star, P_star, problem)

        if myGlobalRank == 0:
            expected_theta_star = np.loadtxt('expected_theta_star_steady_hessian_'+str(nproc)+'.txt')
            expected_I_star = np.loadtxt('expected_I_star_steady_hessian_'+str(nproc)+'.txt')
            expected_P_star = np.loadtxt('expected_P_star_steady_hessian_'+str(nproc)+'.txt')
            expected_F_star = np.loadtxt('expected_F_star_steady_hessian_'+str(nproc)+'.txt')
            expected_P_SO = np.loadtxt('expected_P_steady_hessian_SO_'+str(nproc)+'.txt')

            tol = 1e-6

            if debug:
                for i in range(0, len(expected_theta_star)):
                    print('i = ' + str(i) + ': theta star: expected value = ' + str(expected_theta_star[i]) + ', computed value = ' + str(theta_star[i]) + ', and diff = ' + str(expected_theta_star[i]-theta_star[i]))
                    print('i = ' + str(i) + ': I star: expected value = ' + str(expected_I_star[i]) + ', computed value = ' + str(I_star[i]) + ', and diff = ' + str(expected_I_star[i]-I_star[i]))
                    print('i = ' + str(i) + ': P star: expected value = ' + str(expected_P_star[i]) + ', computed value = ' + str(P_star[i]) + ', and diff = ' + str(expected_P_star[i]-P_star[i]))
                    print('i = ' + str(i) + ': F star: expected value = ' + str(expected_F_star[i]) + ', computed value = ' + str(F_star[i]) + ', and diff = ' + str(expected_F_star[i]-F_star[i]))
                    print('i = ' + str(i) + ': P SO: expected value = ' + str(expected_P_SO[i]) + ', computed value = ' + str(P_SO[i]) + ', and diff = ' + str(expected_P_SO[i]-P_SO[i]))

            self.assertTrue(np.amax(np.abs(expected_theta_star - theta_star)) < tol)
            self.assertTrue(np.amax(np.abs(expected_I_star - I_star)) < tol)
            self.assertTrue(np.amax(np.abs(expected_P_star - P_star)) < tol)
            self.assertTrue(np.amax(np.abs(expected_F_star - F_star)) < tol)
            self.assertTrue(np.amax(np.abs(expected_P_SO - P_SO)) < tol)
예제 #18
0
# First, some Python packages are imported:
from PyTrilinos import Tpetra
from PyTrilinos import Teuchos
import numpy as np
from PyAlbany import Utils

# Then, the parallel environment is initialized (including Kokkos):
comm = Teuchos.DefaultComm.getComm()
parallelEnv = Utils.createDefaultParallelEnv(comm,
                                             n_threads=-1,
                                             n_numa=-1,
                                             device_id=-1)

# (Kokkos finalize will be called during the destruction of parallelEnv;
# we will have to enforce that this destructor is called after the destruction
# of every object which relies on Kokkos.)

# Finally, given a filename and the parallel environment, an Albany problem is constructed:
filename = 'input_conductivity_dist_paramT.yaml'
problem = Utils.createAlbanyProblem(filename, parallelEnv)

# Now, we call the problem destructor first (by setting the RCP to null):
problem = None
# And we call the parallelEnv destructor:
parallelEnv = None
예제 #19
0
filename = 'input_fo_gis_analysis_beta_smbT.yaml'

parameter_index = 0
response_index = 0

timers = Utils.createTimers(["PyAlbany: Create Albany Problem", 
                        "PyAlbany: Read multivector directions",
                        "PyAlbany: Set directions",
                        "PyAlbany: Perform Solve",
                        "PyAlbany: Get Reduced Hessian",
                        "PyAlbany: Write Reduced Hessian",
                        "PyAlbany: Total"])

timers[6].start()
timers[0].start()
problem = Utils.createAlbanyProblem(filename)
timers[0].stop()

timers[1].start()
n_directions=4
parameter_map = problem.getParameterMap(0)
directions = Utils.loadMVector('random_directions', n_directions, parameter_map, distributedFile = False, useBinary = True)
timers[1].stop()

timers[2].start()
problem.setDirections(parameter_index, directions)
timers[2].stop()

timers[3].start()
problem.performSolve()
timers[3].stop()
예제 #20
0
def main(parallelEnv):
    filename = 'input_conductivity_dist_paramT.yaml'
    problem = Utils.createAlbanyProblem(filename, parallelEnv)
예제 #21
0
def main(parallelEnv):
    comm = MPI.COMM_WORLD
    myGlobalRank = comm.rank

    # Create an Albany problem:

    n_params = 2
    filename = "thermal_steady_2.yaml"

    parameter = Utils.createParameterList(filename, parallelEnv)
    problem = Utils.createAlbanyProblem(parameter, parallelEnv)

    # ----------------------------------------------
    #
    #      1. Evaluation of the theta star
    #
    # ----------------------------------------------

    l_min = 8.
    l_max = 20.
    n_l = 5

    p = 1.

    l = l_min + np.power(np.linspace(0.0, 1.0, n_l), p) * (l_max - l_min)

    theta_star, I_star, F_star, P_star = ee.evaluateThetaStar(
        l, problem, n_params)

    np.savetxt('theta_star_steady_2.txt', theta_star)
    np.savetxt('I_star_steady_2.txt', I_star)
    np.savetxt('P_star_steady_2.txt', P_star)
    np.savetxt('F_star_steady_2.txt', F_star)

    # ----------------------------------------------
    #
    #   2. Evaluation of the prefactor using IS
    #
    # ----------------------------------------------

    N_samples = 100

    mean = np.array([1., 1.])
    cov = np.array([[1., 0.], [0., 1.]])

    samples = np.random.multivariate_normal(mean, cov, N_samples)

    angle_1 = 0.49999 * np.pi
    angle_2 = np.pi - angle_1

    P_IS = ee.importanceSamplingEstimator(mean, cov, theta_star, F_star,
                                          P_star, samples, problem)
    P_mixed = ee.mixedImportanceSamplingEstimator(mean, cov, theta_star,
                                                  F_star, P_star, samples,
                                                  problem, angle_1, angle_2)
    P_SO = ee.secondOrderEstimator(mean, cov, l, theta_star, I_star, F_star,
                                   P_star, problem)

    np.savetxt('P_steady_IS_2.txt', P_IS)
    np.savetxt('P_steady_mixed_2.txt', P_mixed)
    np.savetxt('P_steady_SO_2.txt', P_SO)

    problem.reportTimers()

    # ----------------------------------------------
    #
    #   3.               Plots
    #
    # ----------------------------------------------
    if n_params == 2:
        X = np.arange(1, 7, 0.2)
        Y = np.arange(1, 7, 0.25)

        Z1, Z2 = evaluate_responses(X, Y, problem, True)

        X, Y = np.meshgrid(X, Y)

    if myGlobalRank == 0:
        if printPlot:
            plt.figure()
            plt.semilogy(F_star, P_star, 'k*-')
            plt.semilogy(F_star, P_IS, 'b*-')
            plt.semilogy(F_star, P_mixed, 'r*--')
            plt.semilogy(F_star, P_SO, 'g*-')

            plt.savefig('extreme_steady_2.jpeg', dpi=800)
            plt.close()

            if n_params == 2:
                plt.figure()
                plt.plot(theta_star[:, 0], theta_star[:, 1], '*-')
                plt.contour(X, Y, Z1, levels=I_star, colors='g')
                plt.contour(X, Y, Z2, levels=F_star, colors='r')
                plt.savefig('theta_star_2.jpeg', dpi=800)
                plt.close()

                fig = plt.figure()
                ax = fig.gca(projection='3d')
                ax.plot_surface(X, Y, Z1)

                plt.savefig('Z1_2.jpeg', dpi=800)
                plt.close()

                fig = plt.figure()
                ax = fig.gca(projection='3d')
                ax.plot_surface(X, Y, Z2)

                plt.savefig('Z2_2.jpeg', dpi=800)
                plt.close()