def run(): def track_n_save(bunch, map_): mean_x = np.empty(n_turns) mean_y = np.empty(n_turns) sigma_z = np.empty(n_turns) for i in xrange(n_turns): mean_x[i] = bunch.mean_x() mean_y[i] = bunch.mean_y() sigma_z[i] = bunch.sigma_z() for m_ in map_: m_.track(bunch) return mean_x, mean_y, sigma_z def my_fft(data): t = np.arange(len(data)) fft = np.fft.rfft(data) fft_freq = np.fft.rfftfreq(t.shape[-1]) return fft_freq, np.abs(fft.real) def generate_bunch(n_macroparticles, alpha_x, alpha_y, beta_x, beta_y, linear_map): intensity = 1.05e11 sigma_z = 0.059958 gamma = 3730.26 p0 = np.sqrt(gamma**2 - 1) * m_p * c beta_z = (linear_map.eta(dp=0, gamma=gamma) * linear_map.circumference / (2 * np.pi * linear_map.Q_s)) epsn_x = 3.75e-6 # [m rad] epsn_y = 3.75e-6 # [m rad] epsn_z = 4 * np.pi * sigma_z**2 * p0 / (beta_z * e) bunch = generators.generate_Gaussian6DTwiss( macroparticlenumber=n_macroparticles, intensity=intensity, charge=e, gamma=gamma, mass=m_p, circumference=C, alpha_x=alpha_x, beta_x=beta_x, epsn_x=epsn_x, alpha_y=alpha_y, beta_y=beta_y, epsn_y=epsn_y, beta_z=beta_z, epsn_z=epsn_z) # print ('bunch sigma_z=' + bunch.sigma_z()) return bunch def track_n_show(bunch, slicer, map_woWakes, wake_field): fig, ((ax1, ax2)) = plt.subplots(2, 1, figsize=(16, 16)) xp_diff = np.zeros(n_macroparticles) for i in xrange(n_turns): for m_ in map_woWakes: m_.track(bunch) # Dipole X kick. if i == (n_turns - 1): xp_old = bunch.xp.copy() wake_field.track(bunch) if i == (n_turns - 1): xp_diff[:] = bunch.xp[:] - xp_old[:] # Plot bunch.z vs. slice index of particle. Mark particles within # z cuts in green. nsigmaz_lbl = ' (nsigmaz =' + str(n_sigma_z) + ')' slice_set = bunch.get_slices(slicer) pidx = slice_set.particles_within_cuts slidx = slice_set.slice_index_of_particle z_cut_tail, z_cut_head = slice_set.z_cut_tail, slice_set.z_cut_head # In[4]: # Basic parameters. n_turns = 10 n_segments = 1 n_macroparticles = 50 Q_x = 64.28 Q_y = 59.31 Q_s = 0.0020443 C = 26658.883 R = C / (2. * np.pi) alpha_x_inj = 0. alpha_y_inj = 0. beta_x_inj = 66.0064 beta_y_inj = 71.5376 alpha_0 = [0.0003225] #waketable filename fn = os.path.join(os.path.dirname(__file__), 'wake_table.dat') # In[5]: # Parameters for transverse map. s = np.arange(0, n_segments + 1) * C / n_segments alpha_x = alpha_x_inj * np.ones(n_segments) beta_x = beta_x_inj * np.ones(n_segments) D_x = np.zeros(n_segments) alpha_y = alpha_y_inj * np.ones(n_segments) beta_y = beta_y_inj * np.ones(n_segments) D_y = np.zeros(n_segments) # In[6]: # In[7]: # In[8]: # CASE TEST SETUP trans_map = TransverseMap(s, alpha_x, beta_x, D_x, alpha_y, beta_y, D_y, Q_x, Q_y) long_map = LinearMap(alpha_0, C, Q_s) bunch = generate_bunch(n_macroparticles, alpha_x_inj, alpha_y_inj, beta_x_inj, beta_y_inj, long_map) # In[9]: # CASE I # Transverse and long. tracking (linear), and wakes from WakeTable source. # DIPOLE X, UniformBinSlicer n_sigma_z = 2 n_slices = 15 uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. wake_file_columns = [ 'time', 'dipole_x', 'no_dipole_y', 'no_quadrupole_x', 'no_quadrupole_y', 'no_dipole_xy', 'no_dipole_yx' ] table = WakeTable(fn, wake_file_columns, printer=SilentPrinter(), warningprinter=SilentPrinter()) wake_field = WakeField(uniform_bin_slicer, table) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[10]: # CASE II # Transverse and long. tracking (linear), and wakes from WakeTable source. # DIPOLE X, UniformChargeSlicer n_sigma_z = 2 n_slices = 15 uniform_charge_slicer = UniformChargeSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. wake_file_columns = [ 'time', 'dipole_x', 'no_dipole_y', 'no_quadrupole_x', 'no_quadrupole_y', 'no_dipole_xy', 'no_dipole_yx' ] table = WakeTable(fn, wake_file_columns, printer=SilentPrinter(), warningprinter=SilentPrinter()) wake_field = WakeField(uniform_charge_slicer, table) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[11]: # CASE III # Transverse and long. tracking (linear), and wakes from WakeTable source. # Quadrupole X, UniformChargeSlicer n_sigma_z = 2 n_slices = 15 uniform_charge_slicer = UniformChargeSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. wake_file_columns = [ 'time', 'no_dipole_x', 'no_dipole_y', 'quadrupole_x', 'no_quadrupole_y', 'no_dipole_xy', 'no_dipole_yx' ] table = WakeTable(fn, wake_file_columns, printer=SilentPrinter(), warningprinter=SilentPrinter()) wake_field = WakeField(uniform_charge_slicer, table) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[12]: # CASE IV # Transverse and long. tracking (linear), and wakes from WakeTable source. # Quadrupole X, UniformBinSlicer n_sigma_z = 2 n_slices = 15 uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. wake_file_columns = [ 'time', 'no_dipole_x', 'no_dipole_y', 'quadrupole_x', 'no_quadrupole_y', 'no_dipole_xy', 'no_dipole_yx' ] table = WakeTable(fn, wake_file_columns, printer=SilentPrinter(), warningprinter=SilentPrinter()) wake_field = WakeField(uniform_bin_slicer, table) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[15]: # CASE V # Transverse and long. tracking (linear), # Resonator circular n_sigma_z = 2 n_slices = 15 uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. reson_circ = CircularResonator(R_shunt=1e6, frequency=1e8, Q=1) wake_field = WakeField(uniform_bin_slicer, reson_circ) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[16]: # CASE V b. # Transverse and long. tracking (linear), # Several Resonators circular n_sigma_z = 2 n_slices = 15 uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. reson_circ = CircularResonator(R_shunt=1e6, frequency=1e8, Q=1) reson_circ2 = CircularResonator(R_shunt=1e6, frequency=1e9, Q=0.8) reson_circ3 = CircularResonator(R_shunt=5e6, frequency=1e6, Q=0.2) wake_field = WakeField(uniform_bin_slicer, reson_circ, reson_circ2, reson_circ3) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[17]: # CASE V c. # Transverse and long. tracking (linear), # Resonator parallel_plates n_sigma_z = 2 n_slices = 15 uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. reson_para = ParallelPlatesResonator(R_shunt=1e6, frequency=1e8, Q=1) wake_field = WakeField(uniform_bin_slicer, reson_para) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[18]: # CASE V d. # Transverse and long. tracking (linear), # Resonator w. longitudinal wake n_sigma_z = 2 n_slices = 15 uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. reson = Resonator(R_shunt=1e6, frequency=1e8, Q=1, Yokoya_X1=1, Yokoya_X2=1, Yokoya_Y1=1, Yokoya_Y2=1, switch_Z=True) wake_field = WakeField(uniform_bin_slicer, reson) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[19]: # CASE VI # Transverse and long. tracking (linear), # ResistiveWall circular n_sigma_z = 2 n_slices = 15 uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. resis_circ = CircularResistiveWall(pipe_radius=5e-2, resistive_wall_length=C, conductivity=1e6, dt_min=1e-3) wake_field = WakeField(uniform_bin_slicer, resis_circ) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[20]: # CASE VI b. # Transverse and long. tracking (linear), # ResistiveWall parallel_plates n_sigma_z = 2 n_slices = 15 uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. resis_para = ParallelPlatesResistiveWall(pipe_radius=5e-2, resistive_wall_length=C, conductivity=1e6, dt_min=1e-3) wake_field = WakeField(uniform_bin_slicer, resis_para) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes) # In[21]: # CASE VII. # Transverse and long. tracking (linear), # Pass mixture of WakeSources to define WakeField. n_sigma_z = 2 n_slices = 15 uniform_bin_slicer = UniformBinSlicer(n_slices=n_slices, n_sigma_z=n_sigma_z) # Definition of WakeField as a composition of different sources. resis_circ = CircularResistiveWall(pipe_radius=5e-2, resistive_wall_length=C, conductivity=1e6, dt_min=1e-3) reson_para = ParallelPlatesResonator(R_shunt=1e6, frequency=1e8, Q=1) wake_file_columns = [ 'time', 'dipole_x', 'dipole_y', 'quadrupole_x', 'quadrupole_y', 'dipole_xy', 'dipole_yx' ] table = WakeTable(fn, wake_file_columns, printer=SilentPrinter(), warningprinter=SilentPrinter()) wake_field = WakeField(uniform_bin_slicer, resis_circ, reson_para, table) trans_map = [m for m in trans_map] map_woWakes = trans_map + [long_map] track_n_save(bunch, map_woWakes)
def run(job_id, accQ_y): it = job_id # SIMULATION PARAMETERS # ===================== # Simulation parameters n_turns = 10000 n_macroparticles = 100000 # per bunch # MACHINE PARAMETERS # ================== intensity = 1e13 # protons # intensity = 2*4e12 # protons E0 = 71e6 # Kinetic energy [eV] p0 = np.sqrt((m_p_MeV + E0)**2 - m_p_MeV**2) * e / c print('Beam kinetic energy: ' + str(E0 * 1e-6) + ' MeV') print('Beam momentum: ' + str(p0 * 1e-6 * c / e) + ' MeV/c') accQ_x = 4.31 # Horizontal tune # accQ_y = 3.80 # Vertical tune is an input argument chroma = -1.4 # Chromaticity alpha = 5.034**-2 # momentum compaction factor circumference = 160. # [meters] # Approximated average beta functions (lumped wake normalizations) beta_x = circumference / (2. * np.pi * accQ_x) beta_y = circumference / (2. * np.pi * accQ_y) # Harmonic number for RF h_RF = [2] # a list of harmonic number for RF V_RF = [5e3 * 2] # a list of RF voltages p_increment = 0. dphi_RF = [np.pi] # a list of RF phases # dphi_RF = 0. # non-linear longitudinal mode includes RF, otherwise linear needs synhotron tune Q_s longitudinal_mode = 'non-linear' # Q_s=0.02 # Longitudinal tune optics_mode = 'smooth' n_segments = 1 s = None alpha_x = None alpha_y = None D_x = 0 D_y = 0 charge = e mass = m_p name = None app_x = 0 app_y = 0 app_xy = 0 # Creates PyHEADTAIL object for the synchotron machine = Synchrotron(optics_mode=optics_mode, circumference=circumference, n_segments=n_segments, s=s, name=name, alpha_x=alpha_x, beta_x=beta_x, D_x=D_x, alpha_y=alpha_y, beta_y=beta_y, D_y=D_y, accQ_x=accQ_x, accQ_y=accQ_y, Qp_x=chroma, Qp_y=chroma, app_x=app_x, app_y=app_y, app_xy=app_xy, alpha_mom_compaction=alpha, longitudinal_mode=longitudinal_mode, h_RF=np.atleast_1d(h_RF), V_RF=np.atleast_1d(V_RF), dphi_RF=np.atleast_1d(dphi_RF), p0=p0, p_increment=p_increment, charge=charge, mass=mass) print('') print('machine.beta: ') print(machine.beta) print('') print('') print('machine.gamma: ') print(machine.gamma) print('') epsn_x = 300e-6 epsn_y = 300e-6 sigma_z = 15 # bunch length in meters to be matched to the bucket # Creates transverse macroparticle distribution allbunches = machine.generate_6D_Gaussian_bunch(n_macroparticles, intensity, epsn_x, epsn_y, sigma_z) # Creates longitudinal macroparticle distribution rfb = RFBucket(circumference, machine.gamma, m_p, e, [alpha], 0., h_RF, V_RF, dphi_RF) rfb_matcher = RFBucketMatcher(rfb, WaterbagDistribution, sigma_z=sigma_z) rfb_matcher.integrationmethod = 'cumtrapz' z, dp, _, _ = rfb_matcher.generate(n_macroparticles) np.copyto(allbunches.z, z) np.copyto(allbunches.dp, dp) # Slicer object, which used for wakefields and slice monitors slicer = UniformBinSlicer(75, z_cuts=(-2. * sigma_z, 2. * sigma_z)) # WAKE FIELDS # =========== # Length of the wake function in turns, wake n_turns_wake = 150 # Parameters for a resonator # frequency is in the units of (mode-Q_frac), where # mode: integer number of coupled bunch mode (1 matches to the observations) # Q_frac: resonance fractional tune f_r = (1 - 0.83) * 1. / (circumference / (c * machine.beta)) Q = 15 R = 1.0e6 # Renator wake object, which is added to the one turn map wakes = CircularResonator(R, f_r, Q, n_turns_wake=n_turns_wake) wake_field = WakeField(slicer, wakes) machine.one_turn_map.append(wake_field) # CREATE MONITORS # =============== simulation_parameters_dict = {'gamma' : machine.gamma,\ 'intensity' : intensity,\ 'Qx' : accQ_x,\ 'Qy' : accQ_y,\ # 'Qs' : Q_s,\ 'beta_x' : beta_x,\ 'beta_y' : beta_y,\ # 'beta_z' : bucket.beta_z,\ 'epsn_x' : epsn_x,\ 'epsn_y' : epsn_y,\ 'sigma_z' : sigma_z,\ } # Bunch monitor strores bunch average positions for all the bunches bunchmonitor = BunchMonitor(outputpath + '/bunchmonitor_{:04d}'.format(it), n_turns, simulation_parameters_dict, write_buffer_every=32, buffer_size=32) # Slice monitors saves slice-by-slice data for each bunch slicemonitor = SliceMonitor(outputpath + '/slicemonitor_{:01d}_{:04d}'.format(0, it), 60, slicer, simulation_parameters_dict, write_buffer_every=60, buffer_size=60) # Counter for a number of turns stored to slice monitors s_cnt = 0 # TRACKING LOOP # ============= monitor_active = False print('\n--> Begin tracking...\n') for i in range(n_turns): t0 = time.clock() # Tracks beam through the one turn map simulation map machine.track(allbunches) # Stores bunch mean coordinate values bunchmonitor.dump(allbunches) # If the total oscillation amplitude of bunches exceeds the threshold # or the simulation is running on the last turns, triggers the slice # monitors for headtail motion data if (allbunches.mean_x() > 1e-1 or allbunches.mean_y() > 1e-1 or i > (n_turns - 64)): monitor_active = True # saves slice monitor data if monitors are activated and less than # 64 turns have been stored if monitor_active and s_cnt < 64: slicemonitor.dump(allbunches) s_cnt += 1 elif s_cnt == 64: break # If this script is runnin on the first processor, prints the current # bunch coordinates and emittances if (i % 100 == 0): print( '{:4d} \t {:+3e} \t {:+3e} \t {:+3e} \t {:3e} \t {:3e} \t {:3f} \t {:3f} \t {:3f} \t {:3s}' .format(i, allbunches.mean_x(), allbunches.mean_y(), allbunches.mean_z(), allbunches.epsn_x(), allbunches.epsn_y(), allbunches.epsn_z(), allbunches.sigma_z(), allbunches.sigma_dp(), str(time.clock() - t0)))
ww1 = WakeTable(wakefile1, ['time', 'dipole_x', 'dipole_y', 'quadrupole_x', 'quadrupole_y'], n_turns_wake=n_turns_wake) # only dipolar kick- uncomment the following 3 lines #my_length = len(ww1.wake_table['quadrupole_x']) #ww1.wake_table['quadrupole_x'] = np.zeros(my_length) #ww1.wake_table['quadrupole_y'] = np.zeros(my_length) # only quadrupolar kick, uncomment the following 3 lines #my_length = len(ww1.wake_table['dipole_x']) #ww1.wake_table['dipole_x'] = np.zeros(my_length) #ww1.wake_table['dipole_y'] = np.zeros(my_length) wake_field_complete_sps = WakeField(slicer_for_wakefields, ww1)#, beta_x=beta_x, beta_y=beta_y) # 2) Definition of wakefield of a circular resonator reson_circ = CircularResonator(R_shunt=2.2e6, frequency=1.92e9, Q=59000) # assuming here that Q is the quality factor in 1e4 wake_field_reson_circ = WakeField(slicer_for_wakefields, reson_circ) # CREATE TRANSVERSE AND LONGITUDINAL MAPS # ======================================= scale_factor = 2*bunch.p0 # scale the detuning coefficients in pyheadtail units transverse_map = TransverseMap(s, alpha_x, beta_x, D_x, alpha_y, beta_y, D_y, Q_x, Q_y, [Chromaticity(Qp_x, Qp_y), AmplitudeDetuning(app_x*scale_factor, app_y*scale_factor, app_xy*scale_factor)]) longitudinal_map = LinearMap([alpha], circumference, Q_s)